aboutsummaryrefslogtreecommitdiff
path: root/lib/sec_library/include/core/csi_gcc.h
blob: 5cccffa6bb93b386aaf4d0bb1c8b1061b16c1358 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
/*
 * Copyright (C) 2017-2019 Alibaba Group Holding Limited
 */

/******************************************************************************
 * @file     csi_gcc.h
 * @brief    CSI Header File for GCC.
 * @version  V1.0
 * @date     02. June 2020
 ******************************************************************************/

#ifndef _CSI_GCC_H_
#define _CSI_GCC_H_

#include <stdlib.h>
#include <stdint.h>

#ifndef __ASM
#define __ASM                   __asm    /*!< asm keyword for GNU Compiler */
#endif

#ifndef __INLINE
#define __INLINE                inline   /*!< inline keyword for GNU Compiler */
#endif

#ifndef __ALWAYS_STATIC_INLINE
#define __ALWAYS_STATIC_INLINE  __attribute__((always_inline)) static inline
#endif

#ifndef __STATIC_INLINE
#define __STATIC_INLINE         static inline
#endif

#ifndef __NO_RETURN
#define __NO_RETURN             __attribute__((__noreturn__))
#endif

#ifndef __USED
#define __USED                  __attribute__((used))
#endif

#ifndef __WEAK
#define __WEAK                  __attribute__((weak))
#endif

#ifndef __PACKED
#define __PACKED                __attribute__((packed, aligned(1)))
#endif

#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT         struct __attribute__((packed, aligned(1)))
#endif

#ifndef __PACKED_UNION
#define __PACKED_UNION          union __attribute__((packed, aligned(1)))
#endif


/* ###########################  Core Function Access  ########################### */
/** \ingroup  CSI_Core_FunctionInterface
    \defgroup CSI_Core_RegAccFunctions CSI Core Register Access Functions
  @{
 */
/**
  \brief   Enable IRQ Interrupts
  \details Enables IRQ interrupts by setting the IE-bit in the PSR.
           Can only be executed in Privileged modes.
 */
__ALWAYS_STATIC_INLINE void __enable_irq(void)
{
    __ASM volatile("psrset ie");
}



/**
  \brief   Disable IRQ Interrupts
  \details Disables IRQ interrupts by clearing the IE-bit in the PSR.
  Can only be executed in Privileged modes.
 */
__ALWAYS_STATIC_INLINE void __disable_irq(void)
{
    __ASM volatile("psrclr ie");
}

/**
  \brief   Get PSR
  \details Returns the content of the PSR Register.
  \return               PSR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_PSR(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, psr" : "=r"(result));
    return (result);
}

/**
  \brief   Set PSR
  \details Writes the given value to the PSR Register.
  \param [in]    psr  PSR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_PSR(uint32_t psr)
{
    __ASM volatile("mtcr %0, psr" : : "r"(psr));
}

/**
  \brief   Get SP
  \details Returns the content of the SP Register.
  \return               SP Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_SP(void)
{
    uint32_t result;

    __ASM volatile("mov %0, sp" : "=r"(result));
    return (result);
}

/**
  \brief   Set SP
  \details Writes the given value to the SP Register.
  \param [in]    sp  SP Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_SP(uint32_t sp)
{
    __ASM volatile("mov sp, %0" : : "r"(sp): "sp");
}

/**
  \brief   Get Int SP
  \details Returns the content of the Int SP Register.
  \return               Int SP Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_Int_SP(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, cr<15, 1>" : "=r"(result));
    return (result);
}

/**
  \brief   Set Int SP
  \details Writes the given value to the Int SP Register.
  \param [in]    sp  Int SP Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_Int_SP(uint32_t sp)
{
    __ASM volatile("mtcr %0, cr<15, 1>" : : "r"(sp));
}

/**
  \brief   Get VBR Register
  \details Returns the content of the VBR Register.
  \return               VBR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_VBR(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, vbr" : "=r"(result));
    return (result);
}

/**
  \brief   Set VBR
  \details Writes the given value to the VBR Register.
  \param [in]    vbr  VBR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_VBR(uint32_t vbr)
{
    __ASM volatile("mtcr %0, vbr" : : "r"(vbr));
}

/**
  \brief   Get EPC Register
  \details Returns the content of the EPC Register.
  \return               EPC Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_EPC(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, epc" : "=r"(result));
    return (result);
}

/**
  \brief   Set EPC
  \details Writes the given value to the EPC Register.
  \param [in]    epc  EPC Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_EPC(uint32_t epc)
{
    __ASM volatile("mtcr %0, epc" : : "r"(epc));
}

/**
  \brief   Get EPSR
  \details Returns the content of the EPSR Register.
  \return               EPSR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_EPSR(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, epsr" : "=r"(result));
    return (result);
}

/**
  \brief   Set EPSR
  \details Writes the given value to the EPSR Register.
  \param [in]    epsr  EPSR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_EPSR(uint32_t epsr)
{
    __ASM volatile("mtcr %0, epsr" : : "r"(epsr));
}

/**
  \brief   Get CPUID Register
  \details Returns the content of the CPUID Register.
  \return               CPUID Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CPUID(void)
{
    uint32_t result;

#ifdef __CK610
    __ASM volatile("mfcr %0, cr13" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<13, 0>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Get CCR
  \details Returns the current value of the CCR.
  \return               CCR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CCR(void)
{
    register uint32_t result;

#ifdef __CK610
    __ASM volatile("mfcr %0, cr18\n"  : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<18, 0>\n"  : "=r"(result));
#endif
    return (result);
}


/**
  \brief   Set CCR
  \details Assigns the given value to the CCR.
  \param [in]    ccr  CCR value to set
 */
__ALWAYS_STATIC_INLINE void __set_CCR(uint32_t ccr)
{
#ifdef __CK610
    __ASM volatile("mtcr %0, cr18\n" : : "r"(ccr));
#else
    __ASM volatile("mtcr %0, cr<18, 0>\n" : : "r"(ccr));
#endif
}

/**
  \brief   Get CCR2
  \details Returns the current value of the CCR2.
  \return               CCR2 Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CCR2(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<31, 0>\n"  : "=r"(result));
    return (result);
}

/**
  \brief   Set CCR2
  \details Assigns the given value to the CCR2.
  \param [in]    ccr2  CCR2 value to set
 */
__ALWAYS_STATIC_INLINE void __set_CCR2(uint32_t ccr2)
{
    __ASM volatile("mtcr %0, cr<31, 0>\n" : : "r"(ccr2));
}

/**
  \brief   Get DCSR
  \details Returns the content of the DCSR Register.
  \return               DCSR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_DCSR(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("mfcr %0, cr14" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<14, 0>" : "=r"(result));
#endif
    return (result);
}


/**
  \brief   Set DCSR
  \details Writes the given value to the DCSR Register.
  \param [in]    dcsr  DCSR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_DCSR(uint32_t dcsr)
{
#ifdef __CK610
    __ASM volatile("mtcr %0, cr14" : : "r"(dcsr));
#else
    __ASM volatile("mtcr %0, cr<14, 0>" : : "r"(dcsr));
#endif
}


/**
  \brief   Get CFR
  \details Returns the content of the CFR Register.
  \return               CFR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CFR(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("mfcr %0, cr17" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<17, 0>" : "=r"(result));
#endif

    return (result);
}


/**
  \brief   Set CFR
  \details Writes the given value to the CFR Register.
  \param [in]    cfr  CFR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_CFR(uint32_t cfr)
{
#ifdef __CK610
    __ASM volatile("mtcr %0, cr17" : : "r"(cfr));
#else
    __ASM volatile("mtcr %0, cr<17, 0>" : : "r"(cfr));
#endif
}


/**
  \brief   Get CIR
  \details Returns the content of the CIR Register.
  \return               CIR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CIR(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("mfcr %0, cr22" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<22, 0>" : "=r"(result));
#endif
    return (result);
}


/**
  \brief   Set CIR
  \details Writes the given value to the CIR Register.
  \param [in]    cir  CIR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_CIR(uint32_t cir)
{
#ifdef __CK610
    __ASM volatile("mtcr %0, cr22" : : "r"(cir));
#else
    __ASM volatile("mtcr %0, cr<22, 0>" : : "r"(cir));
#endif
}

/**
  \brief   Get ERRLC
  \details Returns the current value of the ERRLC.
  \return               ERRLC Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_ERRLC(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<6, 1>\n"  : "=r"(result));
    return (result);
}

/**
  \brief   Set ERRLC
  \details Assigns the given value to the ERRLC.
  \param [in]    errlc  ERRLC value to set
 */
__ALWAYS_STATIC_INLINE void __set_ERRLC(uint32_t errlc)
{
    __ASM volatile("mtcr %0, cr<6, 1>\n" : : "r"(errlc));
}

/**
  \brief   Get ERRADDR
  \details Returns the current value of the ERRADDR.
  \return               ERRADDR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_ERRADDR(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<7, 1>\n"  : "=r"(result));
    return (result);
}

/**
  \brief   Set ERRADDR
  \details Assigns the given value to the ERRADDR.
  \param [in]    erraddr  ERRADDR value to set
 */
__ALWAYS_STATIC_INLINE void __set_ERRADDR(uint32_t erraddr)
{
    __ASM volatile("mtcr %0, cr<7, 1>\n" : : "r"(erraddr));
}

/**
  \brief   Get ERRSTS
  \details Returns the current value of the ERRSTS.
  \return               ERRSTS Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_ERRSTS(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<8, 1>\n"  : "=r"(result));
    return (result);
}

/**
  \brief   Set ERRSTS
  \details Assigns the given value to the ERRSTS.
  \param [in]    errsts  ERRSTS value to set
 */
__ALWAYS_STATIC_INLINE void __set_ERRSTS(uint32_t errsts)
{
    __ASM volatile("mtcr %0, cr<8, 1>\n" : : "r"(errsts));
}

/**
  \brief   Get ERRINJCR
  \details Returns the current value of the ERRINJCR.
  \return               ERRINJCR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_ERRINJCR(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<9, 1>\n"  : "=r"(result));
    return (result);
}

/**
  \brief   Set ERRINJCR
  \details Assigns the given value to the ERRINJCR.
  \param [in]    errinjcr  ERRINJCR value to set
 */
__ALWAYS_STATIC_INLINE void __set_ERRINJCR(uint32_t errinjcr)
{
    __ASM volatile("mtcr %0, cr<9, 1>\n" : : "r"(errinjcr));
}

/**
  \brief   Get ERRINJCNT
  \details Returns the current value of the ERRINJCNT.
  \return               ERRINJCNT Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_ERRINJCNT(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<10, 1>\n"  : "=r"(result));
    return (result);
}

/**
  \brief   Set ERRINJCNT
  \details Assigns the given value to the ERRINJCNT.
  \param [in]    errinjcnt  ERRINJCNT value to set
 */
__ALWAYS_STATIC_INLINE void __set_ERRINJCNT(uint32_t errinjcnt)
{
    __ASM volatile("mtcr %0, cr<10, 1>\n" : : "r"(errinjcnt));
}

/**
  \brief   Get ITCMCR
  \details Returns the content of the ITCMCR Register.
  \return               ITCMCR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_ITCMCR(void)
{
    uint32_t result;
    __ASM volatile("mfcr %0, cr<22, 1>" : "=r"(result));
    return (result);
}

/**
  \brief   Set ITCMCR
  \details Writes the given value to the ITCMCR Register.
  \param [in]    itcmcr  ITCMCR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_ITCMCR(uint32_t itcmcr)
{
    __ASM volatile("mtcr %0, cr<22, 1>" : : "r"(itcmcr));
}

/**
  \brief   Get DTCMCR
  \details Returns the content of the DTCMCR Register.
  \return               DTCMCR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_DTCMCR(void)
{
    uint32_t result;
    __ASM volatile("mfcr %0, cr<23, 1>" : "=r"(result));
    return (result);
}

/**
  \brief   Set DTCMCR
  \details Writes the given value to the DTCMCR Register.
  \param [in]    dtcmcr  DTCMCR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_DTCMCR(uint32_t dtcmcr)
{
    __ASM volatile("mtcr %0, cr<23, 1>" : : "r"(dtcmcr));
}

/**
  \brief   Get CINDEX
  \details Returns the current value of the CINDEX.
  \return               CINDEX Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CINDEX(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<26, 1>\n"  : "=r"(result));
    return (result);
}

/**
  \brief   Set CINDEX
  \details Assigns the given value to the CINDEX.
  \param [in]    cindex  CINDEX value to set
 */
__ALWAYS_STATIC_INLINE void __set_CINDEX(uint32_t cindex)
{
    __ASM volatile("mtcr %0, cr<26, 1>\n" : : "r"(cindex));
}

/**
  \brief   Get CDATAx
  \details Returns the current value of the CDATAx.
  \return               CDATAx Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CDATA0(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<27, 1>\n"  : "=r"(result));
    return (result);
}

__ALWAYS_STATIC_INLINE uint32_t __get_CDATA1(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<28, 1>\n"  : "=r"(result));
    return (result);
}

__ALWAYS_STATIC_INLINE uint32_t __get_CDATA2(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<29, 1>\n"  : "=r"(result));
    return (result);
}

/**
  \brief   Set CDATAx
  \details Assigns the given value to the CDATAx.
  \param [in]    cdata  CDATAx value to set
 */
__ALWAYS_STATIC_INLINE void __set_CDATA0(uint32_t cdata)
{
    __ASM volatile("mtcr %0, cr<27, 1>\n" : : "r"(cdata));
}

__ALWAYS_STATIC_INLINE void __set_CDATA1(uint32_t cdata)
{
    __ASM volatile("mtcr %0, cr<28, 1>\n" : : "r"(cdata));
}

__ALWAYS_STATIC_INLINE void __set_CDATA2(uint32_t cdata)
{
    __ASM volatile("mtcr %0, cr<29, 1>\n" : : "r"(cdata));
}

/**
  \brief   Get CINS
  \details Returns the current value of the CINS.
  \return               CINS Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CINS(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<31, 1>\n"  : "=r"(result));
    return (result);
}

/**
  \brief   Set CINS
  \details Assigns the given value to the CINS.
  \param [in]    cins  CINS value to set
 */
__ALWAYS_STATIC_INLINE void __set_CINS(uint32_t cins)
{
    __ASM volatile("mtcr %0, cr<31, 1>\n" : : "r"(cins));
}

/**
  \brief   Get CAPR
  \details Returns the current value of the CAPR.
  \return               CAPR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CAPR(void)
{
    register uint32_t result;

#ifdef __CK610
    __ASM volatile("mfcr %0, cr19\n" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<19, 0>\n" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set CAPR
  \details Assigns the given value to the CAPR.
  \param [in]    capr  CAPR value to set
 */
__ALWAYS_STATIC_INLINE void __set_CAPR(uint32_t capr)
{
#ifdef __CK610
    __ASM volatile("mtcr %0, cr19\n" : : "r"(capr));
#else
    __ASM volatile("mtcr %0, cr<19, 0>\n" : : "r"(capr));
#endif
}

/**
  \brief   Get CAPR1
  \details Returns the current value of the CAPR1.
  \return               CAPR1 Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CAPR1(void)
{
    register uint32_t result;

    __ASM volatile("mfcr %0, cr<16, 0>\n" : "=r"(result));
    return (result);
}

/**
  \brief   Set CAPR1
  \details Assigns the given value to the CAPR1.
  \param [in]    capr1  CAPR1 value to set
 */
__ALWAYS_STATIC_INLINE void __set_CAPR1(uint32_t capr1)
{
    __ASM volatile("mtcr %0, cr<16, 0>\n" : : "r"(capr1));
}

/**
  \brief   Set PACR
  \details Assigns the given value to the PACR.

    \param [in]    pacr  PACR value to set
 */
__ALWAYS_STATIC_INLINE void __set_PACR(uint32_t pacr)
{
#ifdef __CK610
    __ASM volatile("mtcr %0, cr20\n" : : "r"(pacr));
#else
    __ASM volatile("mtcr %0, cr<20, 0>\n" : : "r"(pacr));
#endif
}


/**
  \brief   Get PACR
  \details Returns the current value of PACR.
  \return               PACR value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_PACR(void)
{
    uint32_t result;

#ifdef __CK610
    __ASM volatile("mfcr %0, cr20" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<20, 0>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set PRSR
  \details Assigns the given value to the PRSR.

    \param [in]    prsr  PRSR value to set
 */
__ALWAYS_STATIC_INLINE void __set_PRSR(uint32_t prsr)
{
#ifdef __CK610
    __ASM volatile("mtcr %0, cr21\n" : : "r"(prsr));
#else
    __ASM volatile("mtcr %0, cr<21, 0>\n" : : "r"(prsr));
#endif
}

/**
  \brief   Get PRSR
  \details Returns the current value of PRSR.
  \return               PRSR value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_PRSR(void)
{
    uint32_t result;

#ifdef __CK610
    __ASM volatile("mfcr %0, cr21" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<21, 0>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set ATTR0
  \details Assigns the given value to the ATTR0.

    \param [in]    attr0  ATTR0 value to set
 */
__ALWAYS_STATIC_INLINE void __set_ATTR0(uint32_t attr0)
{
    __ASM volatile("mtcr %0, cr<26, 0>\n" : : "r"(attr0));
}

/**
  \brief   Get ATTR0
  \details Returns the current value of ATTR0.
  \return               ATTR0 value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_ATTR0(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, cr<26, 0>" : "=r"(result));

    return (result);
}

/**
  \brief   Set ATTR1
  \details Assigns the given value to the ATTR1.

    \param [in]    attr0  ATTR1 value to set
 */
__ALWAYS_STATIC_INLINE void __set_ATTR1(uint32_t attr1)
{
    __ASM volatile("mtcr %0, cr<27, 0>\n" : : "r"(attr1));
}

/**
  \brief   Get ATTR1
  \details Returns the current value of ATTR1.
  \return               ATTR1 value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_ATTR1(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, cr<27, 0>" : "=r"(result));

    return (result);
}

/**
  \brief   Get user sp
  \details Returns the current value of user r14.
  \return               UR14 value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_UR14(void)
{
    uint32_t result;

#ifdef __CK610
    __ASM volatile("mov %0, sp" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<14, 1>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set UR14
  \details Assigns the given value to the UR14.
  \param [in]    ur14  UR14 value to set
 */
__ALWAYS_STATIC_INLINE void __set_UR14(uint32_t ur14)
{
#ifdef __CK610
    __ASM volatile("mov sp, %0" : "=r"(ur14));
#else
    __ASM volatile("mtcr %0, cr<14, 1>\n" : : "r"(ur14));
#endif
}

/**
  \brief   Get CHR Register
  \details Returns the content of the CHR Register.
  \return               CHR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_CHR(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, cr<31, 0>\n" :"=r"(result));
    return (result);
}

/**
  \brief   Set CHR
  \details Assigns the given value to the CHR.
  \param [in]    chr  CHR value to set
 */
__ALWAYS_STATIC_INLINE void __set_CHR(uint32_t chr)
{
    __ASM volatile("mtcr %0, cr<31, 0>\n" : : "r"(chr));
}

/**
  \brief   Get HINT
  \details Returns the content of the HINT Register.
  \return               HINT Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_HINT(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("mfcr %0, cr<30, 0>" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<31, 0>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set HINT
  \details Writes the given value to the HINT Register.
  \param [in]    hint  HINT Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_HINT(uint32_t hint)
{
#ifdef __CK610
    __ASM volatile("mtcr %0, cr<30, 0>" : "=r"(hint));
#else
    __ASM volatile("mtcr %0, cr<31, 0>" : : "r"(hint));
#endif
}

/**
  \brief   Get MIR
  \details Returns the content of the MIR Register.
  \return               MIR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_MIR(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cprcr %0, cpcr0" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<0, 15>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set MIR
  \details Writes the given value to the MIR Register.
  \param [in]    mir  MIR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_MIR(uint32_t mir)
{
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cpwcr %0, cpcr0" : : "b"(mir));
#else
    __ASM volatile("mtcr %0, cr<0, 15>" : : "r"(mir));
#endif
}


/**
  \brief   Get MEL0
  \details Returns the content of the MEL0 Register.
  \return               MEL0 Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_MEL0(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cprcr %0, cpcr2" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<2, 15>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set MEL0
  \details Writes the given value to the MEL0 Register.
  \param [in]    mel0  MEL0 Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_MEL0(uint32_t mel0)
{
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cpwcr %0, cpcr2" : : "b"(mel0));
#else
    __ASM volatile("mtcr %0, cr<2, 15>" : : "r"(mel0));
#endif
}


/**
  \brief   Get MEL1
  \details Returns the content of the MEL1 Register.
  \return               MEL1 Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_MEL1(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cprcr %0, cpcr3" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<3, 15>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set MEL1
  \details Writes the given value to the MEL1 Register.
  \param [in]    mel1  MEL1 Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_MEL1(uint32_t mel1)
{
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cpwcr %0, cpcr3" : : "b"(mel1));
#else
    __ASM volatile("mtcr %0, cr<3, 15>" : : "r"(mel1));
#endif
}


/**
  \brief   Get MEH
  \details Returns the content of the MEH Register.
  \return               MEH Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_MEH(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cprcr %0, cpcr4" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<4, 15>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set MEH
  \details Writes the given value to the MEH Register.
  \param [in]    meh  MEH Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_MEH(uint32_t meh)
{
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cpwcr %0, cpcr4" : : "b"(meh));
#else
    __ASM volatile("mtcr %0, cr<4, 15>" : : "r"(meh));
#endif
}


/**
  \brief   Get MPR
  \details Returns the content of the MPR Register.
  \return               MPR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_MPR(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cprcr %0, cpcr6" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<6, 15>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set MPR
  \details Writes the given value to the MPR Register.
  \param [in]    mpr  MPR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_MPR(uint32_t mpr)
{
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cpwcr %0, cpcr6" : : "b"(mpr));
#else
    __ASM volatile("mtcr %0, cr<6, 15>" : : "r"(mpr));
#endif
}


/**
  \brief   Get MCIR
  \details Returns the content of the MCIR Register.
  \return               MCIR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_MCIR(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cprcr %0, cpcr8" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<8, 15>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set MCIR
  \details Writes the given value to the MCIR Register.
  \param [in]    mcir  MCIR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_MCIR(uint32_t mcir)
{
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cpwcr %0, cpcr8" : : "b"(mcir));
#else
    __ASM volatile("mtcr %0, cr<8, 15>" : : "r"(mcir));
#endif
}


/**
  \brief   Get MPGD
  \details Returns the content of the MPGD Register.
  \return               MPGD Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_MPGD(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cprcr %0, cpcr29" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<29, 15>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set MPGD
  \details Writes the given value to the MPGD Register.
  \param [in]    mpgd  MPGD Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_MPGD(uint32_t mpgd)
{
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cpwcr %0, cpcr29" : : "b"(mpgd));
#else
    __ASM volatile("mtcr %0, cr<29, 15>" : : "r"(mpgd));
#endif
}


/**
  \brief   Get MSA0
  \details Returns the content of the MSA0 Register.
  \return               MSA0 Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_MSA0(void)
{
    uint32_t result;
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cprcr %0, cpcr30" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<30, 15>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set MSA0
  \details Writes the given value to the MSA0 Register.
  \param [in]    msa0  MSA0 Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_MSA0(uint32_t msa0)
{
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cpwcr %0, cpcr30" : : "b"(msa0));
#else
    __ASM volatile("mtcr %0, cr<30, 15>" : : "r"(msa0));
#endif
}


/**
  \brief   Get MSA1
  \details Returns the content of the MSA1 Register.
  \return               MSA1 Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_MSA1(void)
{
    uint32_t result;

#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cprcr %0, cpcr31" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<31, 15>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set MSA1
  \details Writes the given value to the MSA1 Register.
  \param [in]    msa1  MSA1 Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_MSA1(uint32_t msa1)
{
#ifdef __CK610
    __ASM volatile("cpseti 15");
    __ASM volatile("cpwcr %0, cpcr31" : : "b"(msa1));
#else
    __ASM volatile("mtcr %0, cr<31, 15>" : : "r"(msa1));
#endif
}


/**
  \brief   Enable interrupts and exceptions
  \details Enables interrupts and exceptions by setting the IE-bit and EE-bit in the PSR.
           Can only be executed in Privileged modes.
 */
__ALWAYS_STATIC_INLINE void __enable_excp_irq(void)
{
    __ASM volatile("psrset ee, ie");
}


/**
  \brief   Disable interrupts and exceptions
  \details Disables interrupts and exceptions by clearing the IE-bit and EE-bit in the PSR.
           Can only be executed in Privileged modes.
 */
__ALWAYS_STATIC_INLINE void __disable_excp_irq(void)
{
    __ASM volatile("psrclr ee, ie");
}

/**
  \brief   Get GSR
  \details Returns the content of the GSR Register.
  \return               GSR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_GSR(void)
{
    uint32_t result;

#ifdef __CK610
    __ASM volatile("mfcr %0, cr12" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<12, 0>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Get GCR
  \details Returns the content of the GCR Register.
  \return               GCR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_GCR(void)
{
    uint32_t result;

#ifdef __CK610
    __ASM volatile("mfcr %0, cr11" : "=r"(result));
#else
    __ASM volatile("mfcr %0, cr<11, 0>" : "=r"(result));
#endif
    return (result);
}

/**
  \brief   Set GCR
  \details Writes the given value to the GCR Register.
  \param [in]    gcr  GCR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_GCR(uint32_t gcr)
{
#ifdef __CK610
    __ASM volatile("mtcr %0, cr11" : : "r"(gcr));
#else
    __ASM volatile("mtcr %0, cr<11, 0>" : : "r"(gcr));
#endif
}

/**
  \brief   Get WSSR
  \details Returns the content of the WSSR Register, must be accessed in TEE
  \return               WSSR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_WSSR(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, cr<0, 3>" : "=r"(result));
    return (result);
}

/**
  \brief   Get WRCR
  \details Returns the content of the WRCR Register, must be accessed in TEE
  \return               WRCR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_WRCR(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, cr<1, 3>" : "=r"(result));
    return (result);
}

/**
  \brief   Set WRCR
  \details Writes the given value to the WRCR Register, must be accessed in TEE
  \param [in]    wrcr  WRCR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_WRCR(uint32_t wrcr)
{
    __ASM volatile("mtcr %0, cr<1, 3>" : : "r"(wrcr));
}

/**
  \brief   Get DCR
  \details Returns the content of the DCR Register, must be accessed in TEE
  \return               DCR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_DCR(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, cr<8, 3>" : "=r"(result));
    return (result);
}

/**
  \brief   Set DCR
  \details Writes the given value to the DCR Register, must be accessed in TEE
  \param [in]    dcr  DCR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_DCR(uint32_t dcr)
{
    __ASM volatile("mtcr %0, cr<8, 3>" : : "r"(dcr));
}

/**
  \brief   Get PCR
  \details Returns the content of the PCR Register, must be accessed in TEE
  \return               PCR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_PCR(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, cr<9, 3>" : "=r"(result));
    return (result);
}

/**
  \brief   Set PCR
  \details Writes the given value to the PCR Register, must be accessed in TEE
  \param [in]    pcr  PCR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_PCR(uint32_t pcr)
{
    __ASM volatile("mtcr %0, cr<9, 3>" : : "r"(pcr));
}

/**
  \brief   Get EBR
  \details Returns the content of the EBR Register.
  \return               EBR Register value
 */
__ALWAYS_STATIC_INLINE uint32_t __get_EBR(void)
{
    uint32_t result;

    __ASM volatile("mfcr %0, cr<1, 1>" : "=r"(result));
    return (result);
}

/**
  \brief   Set EBR
  \details Writes the given value to the EBR Register.
  \param [in]    ebr  EBR Register value to set
 */
__ALWAYS_STATIC_INLINE void __set_EBR(uint32_t ebr)
{
    __ASM volatile("mtcr %0, cr<1, 1>" : : "r"(ebr));
}

/*@} end of CSI_Core_RegAccFunctions */

/* ##########################  Core Instruction Access  ######################### */
/** \defgroup CSI_Core_InstructionInterface CSI Core Instruction Interface
  Access to dedicated instructions
  @{
*/

#define __CSI_GCC_OUT_REG(r) "=r" (r)
#define __CSI_GCC_USE_REG(r) "r" (r)

/**
  \brief   No Operation
  \details No Operation does nothing. This instruction can be used for code alignment purposes.
 */
__ALWAYS_STATIC_INLINE void __NOP(void)
{
    __ASM volatile("nop");
}


/**
  \brief   Wait For Interrupt
  \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
 */
__ALWAYS_STATIC_INLINE void __WFI(void)
{
    __ASM volatile("wait");
}

/**
  \brief   Wait For Interrupt
  \details Wait For Interrupt is a hint instruction that suspends execution until one interrupt occurs.
 */
__ALWAYS_STATIC_INLINE void __WAIT(void)
{
    __ASM volatile("wait");
}

/**
  \brief   Doze For Interrupt
  \details Doze For Interrupt is a hint instruction that suspends execution until one interrupt occurs.
 */
__ALWAYS_STATIC_INLINE void __DOZE(void)
{
    __ASM volatile("doze");
}

/**
  \brief   Stop For Interrupt
  \details Stop For Interrupt is a hint instruction that suspends execution until one interrupt occurs.
 */
__ALWAYS_STATIC_INLINE void __STOP(void)
{
    __ASM volatile("stop");
}

/**
  \brief   Instruction Synchronization Barrier
  \details Instruction Synchronization Barrier flushes the pipeline in the processor,
           so that all instructions following the ISB are fetched from cache or memory,
           after the instruction has been completed.
 */
__ALWAYS_STATIC_INLINE void __ISB(void)
{
    __ASM volatile("sync"::: "memory");
}


/**
  \brief   Data Synchronization Barrier
  \details Acts as a special kind of Data Memory Barrier.
           It completes when all explicit memory accesses before this instruction complete.
 */
__ALWAYS_STATIC_INLINE void __DSB(void)
{
    __ASM volatile("sync"::: "memory");
}


/**
  \brief   Data Memory Barrier
  \details Ensures the apparent order of the explicit memory operations before
           and after the instruction, without ensuring their completion.
 */
__ALWAYS_STATIC_INLINE void __DMB(void)
{
    __ASM volatile("sync"::: "memory");
}

/**
  \brief   Search from the highest bit that the very first bit which's value is 1.
  \param [in]    value  Value to  bit search.
  \return               if the highest bit' value is 1,  return 0, and if lowest bit's value is 1, return 31, otherwise return 32.
 */
#if !defined(__CK610) || !(__CK80X == 1)
__ALWAYS_STATIC_INLINE uint32_t __FF0(uint32_t value)
{
    uint32_t ret;

    __ASM volatile("ff0 %0, %1" : "=r"(ret) : "r"(value));
    return ret;
}
#endif

/**
  \brief   Search from the highest bit that the very first bit which's value is 0.
  \param [in]    value  Value to  bit search.
  \return               if the highest bit' value is 0,  return 0, and if lowest bit's value is 0, return 31, otherwise return 32.
 */
#if !(__CK80X == 1)
__ALWAYS_STATIC_INLINE uint32_t __FF1(uint32_t value)
{
    uint32_t ret;
#if !defined (__CK610)
    __ASM volatile("ff1 %0, %1" : "=r"(ret) : "r"(value));
#else
    ret = value;
    __ASM volatile("ff1 %0" : "=r"(ret):);
#endif
    return ret;
}
#endif

/**
  \brief   Reverse byte order (32 bit)
  \details Reverses the byte order in integer value.
  \param [in]    value  Value to reverse
  \return               Reversed value
 */
__ALWAYS_STATIC_INLINE uint32_t __REV(uint32_t value)
{
    return __builtin_bswap32(value);
}


/**
  \brief   Reverse byte order (16 bit)
  \details Reverses the byte order in two unsigned short values.
  \param [in]    value  Value to reverse
  \return               Reversed value
 */
__ALWAYS_STATIC_INLINE uint32_t __REV16(uint32_t value)
{
    uint32_t result;
#if (__CK80X >= 2)
    __ASM volatile("revh %0, %1" : __CSI_GCC_OUT_REG(result) : __CSI_GCC_USE_REG(value));
#else
    result = ((value & 0xFF000000) >> 8) | ((value & 0x00FF0000) << 8) |
             ((value & 0x0000FF00) >> 8) | ((value & 0x000000FF) << 8);
#endif
    return (result);
}


/**
  \brief   Reverse byte order in signed short value
  \details Reverses the byte order in a signed short value with sign extension to integer.
  \param [in]    value  Value to reverse
  \return               Reversed value
 */
__ALWAYS_STATIC_INLINE int32_t __REVSH(int32_t value)
{
    return (short)(((value & 0xFF00) >> 8) | ((value & 0x00FF) << 8));
}


/**
  \brief   Rotate Right in unsigned value (32 bit)
  \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
  \param [in]    op1  Value to rotate
  \param [in]    op2  Number of Bits to rotate
  \return               Rotated value
 */
__ALWAYS_STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{
    return (op1 >> op2) | (op1 << (32U - op2));
}


/**
  \brief   Breakpoint
  \details Causes the processor to enter Debug state
           Debug tools can use this to investigate system state when the instruction at a particular address is reached.
 */
__ALWAYS_STATIC_INLINE void __BKPT(void)
{
    __ASM volatile("bkpt");
}

/**
  \brief   Reverse bit order of value
  \details Reverses the bit order of the given value.
  \param [in]    value  Value to reverse
  \return               Reversed value
 */
__ALWAYS_STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
    uint32_t result;

#if (__CK80X >= 0x03U)
    __ASM volatile("brev %0, %1" : "=r"(result) : "r"(value));
#else
    int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */

    result = value;                      /* r will be reversed bits of v; first get LSB of v */

    for (value >>= 1U; value; value >>= 1U) {
        result <<= 1U;
        result |= value & 1U;
        s--;
    }

    result <<= s;                        /* shift when v's highest bits are zero */
#endif
    return (result);
}


/**
  \brief   Count leading zeros
  \details Counts the number of leading zeros of a data value.
  \param [in]  value  Value to count the leading zeros
  \return             number of leading zeros in value
 */
#define __CLZ             __builtin_clz
/**
  \details This function saturates a signed value.
  \param [in]    x   Value to be saturated
  \param [in]    y   Bit position to saturate to [1..32]
  \return            Saturated value.
 */
__ALWAYS_STATIC_INLINE int32_t __SSAT(int32_t x, uint32_t y)
{
    int32_t posMax, negMin;
    uint32_t i;

    posMax = 1;

    for (i = 0; i < (y - 1); i++) {
        posMax = posMax * 2;
    }

    if (x > 0) {
        posMax = (posMax - 1);

        if (x > posMax) {
            x = posMax;
        }

//    x &= (posMax * 2 + 1);
    } else {
        negMin = -posMax;

        if (x < negMin) {
            x = negMin;
        }

//    x &= (posMax * 2 - 1);
    }

    return (x);
}

/**
  \brief   Unsigned Saturate
  \details Saturates an unsigned value.
  \param [in]  value  Value to be saturated
  \param [in]    sat  Bit position to saturate to (0..31)
  \return             Saturated value
 */
__ALWAYS_STATIC_INLINE uint32_t __USAT(uint32_t value, uint32_t sat)
{
    uint32_t result;

    if ((((0xFFFFFFFF >> sat) << sat) & value) != 0) {
        result = 0xFFFFFFFF >> (32 - sat);
    } else {
        result = value;
    }

    return (result);
}

/**
  \brief   Unsigned Saturate for internal use
  \details Saturates an unsigned value, should not call directly.
  \param [in]  value  Value to be saturated
  \param [in]    sat  Bit position to saturate to (0..31)
  \return             Saturated value
 */
__ALWAYS_STATIC_INLINE uint32_t __IUSAT(uint32_t value, uint32_t sat)
{
    uint32_t result;

    if (value & 0x80000000) { /* only overflow set bit-31 */
        result = 0;
    } else if ((((0xFFFFFFFF >> sat) << sat) & value) != 0) {
        result = 0xFFFFFFFF >> (32 - sat);
    } else {
        result = value;
    }

    return (result);
}

/**
  \brief   Rotate Right with Extend
  \details This function moves each bit of a bitstring right by one bit.
           The carry input is shifted in at the left end of the bitstring.
  \note    carry input will always 0.
  \param [in]    op1  Value to rotate
  \return               Rotated value
 */
__ALWAYS_STATIC_INLINE uint32_t __RRX(uint32_t op1)
{
#if (__CK80X >= 2)
    uint32_t res = 0;
    __ASM volatile("bgeni    t0, 31\n\t"
                   "lsri     %0, 1\n\t"
                   "movt     %1, t0\n\t"
                   "or       %1, %1, %0\n\t"
               : "=r"(op1), "=r"(res): "0"(op1), "1"(res): "t0");
    return res;
#else
    uint32_t res = 0;
    __ASM volatile("movi     r7, 0\n\t"
                   "bseti    r7, 31\n\t"
                   "lsri     %0, 1\n\t"
                   "bf       1f\n\t"
                   "mov     %1, r7\n\t"
                   "1:\n\t"
                   "or       %1, %1, %0\n\t"
               : "=r"(op1), "=r"(res): "0"(op1), "1"(res): "r7");
    return res;
#endif
}

/**
  \brief   LDRT Unprivileged (8 bit)
  \details Executes a Unprivileged LDRT instruction for 8 bit value.
  \param [in]    addr  Pointer to location
  \return             value of type uint8_t at (*ptr)
 */
__ALWAYS_STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr)
{
    uint32_t result;
//#warning "__LDRBT"
    __ASM volatile("ldb %0, (%1, 0)" : "=r"(result) : "r"(addr));
    return ((uint8_t) result);    /* Add explicit type cast here */
}


/**
  \brief   LDRT Unprivileged (16 bit)
  \details Executes a Unprivileged LDRT instruction for 16 bit values.
  \param [in]    addr  Pointer to location
  \return        value of type uint16_t at (*ptr)
 */
__ALWAYS_STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr)
{
    uint32_t result;

//#warning "__LDRHT"
    __ASM volatile("ldh %0, (%1, 0)" : "=r"(result) : "r"(addr));
    return ((uint16_t) result);    /* Add explicit type cast here */
}


/**
  \brief   LDRT Unprivileged (32 bit)
  \details Executes a Unprivileged LDRT instruction for 32 bit values.
  \param [in]    addr  Pointer to location
  \return        value of type uint32_t at (*ptr)
 */
__ALWAYS_STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr)
{
    uint32_t result;

//#warning "__LDRT"
    __ASM volatile("ldw %0, (%1, 0)" : "=r"(result) : "r"(addr));
    return (result);
}


/**
  \brief   STRT Unprivileged (8 bit)
  \details Executes a Unprivileged STRT instruction for 8 bit values.
  \param [in]  value  Value to store
  \param [in]    addr  Pointer to location
 */
__ALWAYS_STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr)
{
//#warning "__STRBT"
    __ASM volatile("stb %1, (%0, 0)" :: "r"(addr), "r"((uint32_t)value) : "memory");
}


/**
  \brief   STRT Unprivileged (16 bit)
  \details Executes a Unprivileged STRT instruction for 16 bit values.
  \param [in]  value  Value to store
  \param [in]    addr  Pointer to location
 */
__ALWAYS_STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr)
{
//#warning "__STRHT"
    __ASM volatile("sth %1, (%0, 0)" :: "r"(addr), "r"((uint32_t)value) : "memory");
}


/**
  \brief   STRT Unprivileged (32 bit)
  \details Executes a Unprivileged STRT instruction for 32 bit values.
  \param [in]  value  Value to store
  \param [in]    addr  Pointer to location
 */
__ALWAYS_STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr)
{
//#warning "__STRT"
    __ASM volatile("stw %1, (%0, 0)" :: "r"(addr), "r"(value) : "memory");
}

/*@}*/ /* end of group CSI_Core_InstructionInterface */


/* ##########################  FPU functions  #################################### */
/**
  \ingroup  CSI_Core_FunctionInterface
  \defgroup CSI_Core_FpuFunctions FPU Functions
  \brief    Function that provides FPU type.
  @{
 */

/**
  \brief   get FPU type
  \details returns the FPU type, always 0.
  \returns
   - \b  0: No FPU
   - \b  1: Single precision FPU
   - \b  2: Double + Single precision FPU
 */
__ALWAYS_STATIC_INLINE uint32_t __get_FPUType(void)
{
//FIXME:
    return 0;
}

/*@} end of CSI_Core_FpuFunctions */

/* ###################  Compiler specific Intrinsics  ########################### */
/** \defgroup CSI_SIMD_intrinsics CSI SIMD Intrinsics
  Access to dedicated SIMD instructions \n
  Single Instruction Multiple Data (SIMD) extensions are provided to simplify development of application software. SIMD extensions increase the processing capability without materially increasing the power consumption. The SIMD extensions are completely transparent to the operating system (OS), allowing existing OS ports to be used.

  @{
*/

/**
  \brief   Halfword packing instruction. Combines bits[15:0] of val1 with bits[31:16]
           of val2 levitated with the val3.
  \details Combine a halfword from one register with a halfword from another register.
           The second argument can be left-shifted before extraction of the halfword.
  \param [in]    val1   first 16-bit operands
  \param [in]    val2   second 16-bit operands
  \param [in]    val3   value for left-shifting val2. Value range [0..31].
  \return               the combination of halfwords.
  \remark
                 res[15:0]  = val1[15:0]              \n
                 res[31:16] = val2[31:16] << val3
 */
__ALWAYS_STATIC_INLINE uint32_t __PKHBT(uint32_t val1, uint32_t val2, uint32_t val3)
{
    return ((((int32_t)(val1) << 0) & (int32_t)0x0000FFFF) | (((int32_t)(val2) << val3) & (int32_t)0xFFFF0000));
}

/**
  \brief   Halfword packing instruction. Combines bits[31:16] of val1 with bits[15:0]
           of val2 right-shifted with the val3.
  \details Combine a halfword from one register with a halfword from another register.
           The second argument can be right-shifted before extraction of the halfword.
  \param [in]    val1   first 16-bit operands
  \param [in]    val2   second 16-bit operands
  \param [in]    val3   value for right-shifting val2. Value range [1..32].
  \return               the combination of halfwords.
  \remark
                 res[15:0]  = val2[15:0] >> val3        \n
                 res[31:16] = val1[31:16]
 */
__ALWAYS_STATIC_INLINE uint32_t __PKHTB(uint32_t val1, uint32_t val2, uint32_t val3)
{
    return ((((int32_t)(val1) << 0) & (int32_t)0xFFFF0000) | (((int32_t)(val2) >> val3) & (int32_t)0x0000FFFF));
}

/**
  \brief   Dual 16-bit signed saturate.
  \details This function saturates a signed value.
  \param [in]    x   two signed 16-bit values to be saturated.
  \param [in]    y   bit position for saturation, an integral constant expression in the range 1 to 16.
  \return        the sum of the absolute differences of the following bytes, added to the accumulation value:\n
                 the signed saturation of the low halfword in val1, saturated to the bit position specified in
                 val2 and returned in the low halfword of the return value.\n
                 the signed saturation of the high halfword in val1, saturated to the bit position specified in
                 val2 and returned in the high halfword of the return value.
 */
__ALWAYS_STATIC_INLINE uint32_t __SSAT16(int32_t x, const uint32_t y)
{
    int32_t r = 0, s = 0;

    r = __SSAT((((int32_t)x << 16) >> 16), y) & (int32_t)0x0000FFFF;
    s = __SSAT((((int32_t)x) >> 16), y) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned saturate.
  \details This function enables you to saturate two signed 16-bit values to a selected unsigned range.
  \param [in]    x   two signed 16-bit values to be saturated.
  \param [in]    y   bit position for saturation, an integral constant expression in the range 1 to 16.
  \return        the saturation of the two signed 16-bit values, as non-negative values:
                 the saturation of the low halfword in val1, saturated to the bit position specified in
                 val2 and returned in the low halfword of the return value.\n
                 the saturation of the high halfword in val1, saturated to the bit position specified in
                 val2 and returned in the high halfword of the return value.
 */
__ALWAYS_STATIC_INLINE uint32_t __USAT16(uint32_t x, const uint32_t y)
{
    int32_t r = 0, s = 0;

    r = __IUSAT(((x << 16) >> 16), y) & 0x0000FFFF;
    s = __IUSAT(((x) >> 16), y) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Quad 8-bit saturating addition.
  \details This function enables you to perform four 8-bit integer additions,
           saturating the results to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the saturated addition of the first byte of each operand in the first byte of the return value.\n
                 the saturated addition of the second byte of each operand in the second byte of the return value.\n
                 the saturated addition of the third byte of each operand in the third byte of the return value.\n
                 the saturated addition of the fourth byte of each operand in the fourth byte of the return value.\n
                 The returned results are saturated to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
  \remark
                 res[7:0]   = val1[7:0]   + val2[7:0]        \n
                 res[15:8]  = val1[15:8]  + val2[15:8]       \n
                 res[23:16] = val1[23:16] + val2[23:16]      \n
                 res[31:24] = val1[31:24] + val2[31:24]
 */
__ALWAYS_STATIC_INLINE uint32_t __QADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = __SSAT(((((int32_t)x << 24) >> 24) + (((int32_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
    s = __SSAT(((((int32_t)x << 16) >> 24) + (((int32_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
    t = __SSAT(((((int32_t)x <<  8) >> 24) + (((int32_t)y <<  8) >> 24)), 8) & (int32_t)0x000000FF;
    u = __SSAT(((((int32_t)x) >> 24) + (((int32_t)y) >> 24)), 8) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned saturating addition.
  \details This function enables you to perform four unsigned 8-bit integer additions,
           saturating the results to the 8-bit unsigned integer range 0 < x < 2^8 - 1.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the saturated addition of the first byte of each operand in the first byte of the return value.\n
                 the saturated addition of the second byte of each operand in the second byte of the return value.\n
                 the saturated addition of the third byte of each operand in the third byte of the return value.\n
                 the saturated addition of the fourth byte of each operand in the fourth byte of the return value.\n
                 The returned results are saturated to the 8-bit signed integer range 0 <= x <= 2^8 - 1.
  \remark
                 res[7:0]   = val1[7:0]   + val2[7:0]        \n
                 res[15:8]  = val1[15:8]  + val2[15:8]       \n
                 res[23:16] = val1[23:16] + val2[23:16]      \n
                 res[31:24] = val1[31:24] + val2[31:24]
 */
__ALWAYS_STATIC_INLINE uint32_t __UQADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = __IUSAT((((x << 24) >> 24) + ((y << 24) >> 24)), 8) & 0x000000FF;
    s = __IUSAT((((x << 16) >> 24) + ((y << 16) >> 24)), 8) & 0x000000FF;
    t = __IUSAT((((x <<  8) >> 24) + ((y <<  8) >> 24)), 8) & 0x000000FF;
    u = __IUSAT((((x) >> 24) + ((y) >> 24)), 8) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Quad 8-bit signed addition.
  \details This function performs four 8-bit signed integer additions.
  \param [in]    x  first four 8-bit summands.
  \param [in]    y  second four 8-bit summands.
  \return        the addition of the first bytes from each operand, in the first byte of the return value.\n
                 the addition of the second bytes of each operand, in the second byte of the return value.\n
                 the addition of the third bytes of each operand, in the third byte of the return value.\n
                 the addition of the fourth bytes of each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = val1[7:0]   + val2[7:0]        \n
                 res[15:8]  = val1[15:8]  + val2[15:8]       \n
                 res[23:16] = val1[23:16] + val2[23:16]      \n
                 res[31:24] = val1[31:24] + val2[31:24]
 */
__ALWAYS_STATIC_INLINE uint32_t __SADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = ((((int32_t)x << 24) >> 24) + (((int32_t)y << 24) >> 24)) & (int32_t)0x000000FF;
    s = ((((int32_t)x << 16) >> 24) + (((int32_t)y << 16) >> 24)) & (int32_t)0x000000FF;
    t = ((((int32_t)x <<  8) >> 24) + (((int32_t)y <<  8) >> 24)) & (int32_t)0x000000FF;
    u = ((((int32_t)x) >> 24) + (((int32_t)y) >> 24)) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned addition.
  \details This function performs four unsigned 8-bit integer additions.
  \param [in]    x  first four 8-bit summands.
  \param [in]    y  second four 8-bit summands.
  \return        the addition of the first bytes from each operand, in the first byte of the return value.\n
                 the addition of the second bytes of each operand, in the second byte of the return value.\n
                 the addition of the third bytes of each operand, in the third byte of the return value.\n
                 the addition of the fourth bytes of each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = val1[7:0]   + val2[7:0]        \n
                 res[15:8]  = val1[15:8]  + val2[15:8]       \n
                 res[23:16] = val1[23:16] + val2[23:16]      \n
                 res[31:24] = val1[31:24] + val2[31:24]
 */
__ALWAYS_STATIC_INLINE uint32_t __UADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = (((x << 24) >> 24) + ((y << 24) >> 24)) & 0x000000FF;
    s = (((x << 16) >> 24) + ((y << 16) >> 24)) & 0x000000FF;
    t = (((x <<  8) >> 24) + ((y <<  8) >> 24)) & 0x000000FF;
    u = (((x) >> 24) + ((y) >> 24)) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Quad 8-bit saturating subtract.
  \details This function enables you to perform four 8-bit integer subtractions,
           saturating the results to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the subtraction of the first byte of each operand in the first byte of the return value.\n
                 the subtraction of the second byte of each operand in the second byte of the return value.\n
                 the subtraction of the third byte of each operand in the third byte of the return value.\n
                 the subtraction of the fourth byte of each operand in the fourth byte of the return value.\n
                 The returned results are saturated to the 8-bit signed integer range -2^7 <= x <= 2^7 - 1.
  \remark
                 res[7:0]   = val1[7:0]   - val2[7:0]        \n
                 res[15:8]  = val1[15:8]  - val2[15:8]       \n
                 res[23:16] = val1[23:16] - val2[23:16]      \n
                 res[31:24] = val1[31:24] - val2[31:24]
 */
__ALWAYS_STATIC_INLINE uint32_t __QSUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = __SSAT(((((int32_t)x << 24) >> 24) - (((int32_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
    s = __SSAT(((((int32_t)x << 16) >> 24) - (((int32_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
    t = __SSAT(((((int32_t)x <<  8) >> 24) - (((int32_t)y <<  8) >> 24)), 8) & (int32_t)0x000000FF;
    u = __SSAT(((((int32_t)x) >> 24) - (((int32_t)y) >> 24)), 8) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned saturating subtraction.
  \details This function enables you to perform four unsigned 8-bit integer subtractions,
           saturating the results to the 8-bit unsigned integer range 0 < x < 2^8 - 1.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the subtraction of the first byte of each operand in the first byte of the return value.\n
                 the subtraction of the second byte of each operand in the second byte of the return value.\n
                 the subtraction of the third byte of each operand in the third byte of the return value.\n
                 the subtraction of the fourth byte of each operand in the fourth byte of the return value.\n
                 The returned results are saturated to the 8-bit unsigned integer range 0 <= x <= 2^8 - 1.
  \remark
                 res[7:0]   = val1[7:0]   - val2[7:0]        \n
                 res[15:8]  = val1[15:8]  - val2[15:8]       \n
                 res[23:16] = val1[23:16] - val2[23:16]      \n
                 res[31:24] = val1[31:24] - val2[31:24]
 */
__ALWAYS_STATIC_INLINE uint32_t __UQSUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = __IUSAT((((x << 24) >> 24) - ((y << 24) >> 24)), 8) & 0x000000FF;
    s = __IUSAT((((x << 16) >> 24) - ((y << 16) >> 24)), 8) & 0x000000FF;
    t = __IUSAT((((x <<  8) >> 24) - ((y <<  8) >> 24)), 8) & 0x000000FF;
    u = __IUSAT((((x) >> 24) - ((y) >> 24)), 8) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Quad 8-bit signed subtraction.
  \details This function enables you to perform four 8-bit signed integer subtractions.
  \param [in]    x  first four 8-bit operands of each subtraction.
  \param [in]    y  second four 8-bit operands of each subtraction.
  \return        the subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the subtraction of the second bytes of each operand, in the second byte of the return value.\n
                 the subtraction of the third bytes of each operand, in the third byte of the return value.\n
                 the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = val1[7:0]   - val2[7:0]        \n
                 res[15:8]  = val1[15:8]  - val2[15:8]       \n
                 res[23:16] = val1[23:16] - val2[23:16]      \n
                 res[31:24] = val1[31:24] - val2[31:24]
 */
__ALWAYS_STATIC_INLINE uint32_t __SSUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = ((((int32_t)x << 24) >> 24) - (((int32_t)y << 24) >> 24)) & (int32_t)0x000000FF;
    s = ((((int32_t)x << 16) >> 24) - (((int32_t)y << 16) >> 24)) & (int32_t)0x000000FF;
    t = ((((int32_t)x <<  8) >> 24) - (((int32_t)y <<  8) >> 24)) & (int32_t)0x000000FF;
    u = ((((int32_t)x) >> 24) - (((int32_t)y) >> 24)) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned subtract.
  \details This function enables you to perform four 8-bit unsigned integer subtractions.
  \param [in]    x  first four 8-bit operands of each subtraction.
  \param [in]    y  second four 8-bit operands of each subtraction.
  \return        the subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the subtraction of the second bytes of each operand, in the second byte of the return value.\n
                 the subtraction of the third bytes of each operand, in the third byte of the return value.\n
                 the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = val1[7:0]   - val2[7:0]        \n
                 res[15:8]  = val1[15:8]  - val2[15:8]       \n
                 res[23:16] = val1[23:16] - val2[23:16]      \n
                 res[31:24] = val1[31:24] - val2[31:24]
 */
__ALWAYS_STATIC_INLINE uint32_t __USUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = (((x << 24) >> 24) - ((y << 24) >> 24)) & 0x000000FF;
    s = (((x << 16) >> 24) - ((y << 16) >> 24)) & 0x000000FF;
    t = (((x <<  8) >> 24) - ((y <<  8) >> 24)) & 0x000000FF;
    u = (((x) >> 24) - ((y) >> 24)) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Unsigned sum of quad 8-bit unsigned absolute difference.
  \details This function enables you to perform four unsigned 8-bit subtractions, and add the absolute values
           of the differences together, returning the result as a single unsigned integer.
  \param [in]    x  first four 8-bit operands of each subtraction.
  \param [in]    y  second four 8-bit operands of each subtraction.
  \return        the subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the subtraction of the second bytes of each operand, in the second byte of the return value.\n
                 the subtraction of the third bytes of each operand, in the third byte of the return value.\n
                 the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.\n
                 The sum is returned as a single unsigned integer.
  \remark
                 absdiff1   = val1[7:0]   - val2[7:0]        \n
                 absdiff2   = val1[15:8]  - val2[15:8]       \n
                 absdiff3   = val1[23:16] - val2[23:16]      \n
                 absdiff4   = val1[31:24] - val2[31:24]      \n
                 res[31:0]  = absdiff1 + absdiff2 + absdiff3 + absdiff4
 */
__ALWAYS_STATIC_INLINE uint32_t __USAD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = (((x << 24) >> 24) - ((y << 24) >> 24)) & 0x000000FF;
    s = (((x << 16) >> 24) - ((y << 16) >> 24)) & 0x000000FF;
    t = (((x <<  8) >> 24) - ((y <<  8) >> 24)) & 0x000000FF;
    u = (((x) >> 24) - ((y) >> 24)) & 0x000000FF;

    return (u + t + s + r);
}

/**
  \brief   Unsigned sum of quad 8-bit unsigned absolute difference with 32-bit accumulate.
  \details This function enables you to perform four unsigned 8-bit subtractions, and add the absolute values
           of the differences to a 32-bit accumulate operand.
  \param [in]    x  first four 8-bit operands of each subtraction.
  \param [in]    y  second four 8-bit operands of each subtraction.
  \param [in]  sum  accumulation value.
  \return        the sum of the absolute differences of the following bytes, added to the accumulation value:
                 the subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the subtraction of the second bytes of each operand, in the second byte of the return value.\n
                 the subtraction of the third bytes of each operand, in the third byte of the return value.\n
                 the subtraction of the fourth bytes of each operand, in the fourth byte of the return value.
  \remark
                 absdiff1 = val1[7:0]   - val2[7:0]        \n
                 absdiff2 = val1[15:8]  - val2[15:8]       \n
                 absdiff3 = val1[23:16] - val2[23:16]      \n
                 absdiff4 = val1[31:24] - val2[31:24]      \n
                 sum = absdiff1 + absdiff2 + absdiff3 + absdiff4 \n
                 res[31:0] = sum[31:0] + val3[31:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __USADA8(uint32_t x, uint32_t y, uint32_t sum)
{
    int32_t r, s, t, u;

#ifdef __cplusplus
    r = (abs((long long)((x << 24) >> 24) - ((y << 24) >> 24))) & 0x000000FF;
    s = (abs((long long)((x << 16) >> 24) - ((y << 16) >> 24))) & 0x000000FF;
    t = (abs((long long)((x <<  8) >> 24) - ((y <<  8) >> 24))) & 0x000000FF;
    u = (abs((long long)((x) >> 24) - ((y) >> 24))) & 0x000000FF;
#else
    r = (abs(((x << 24) >> 24) - ((y << 24) >> 24))) & 0x000000FF;
    s = (abs(((x << 16) >> 24) - ((y << 16) >> 24))) & 0x000000FF;
    t = (abs(((x <<  8) >> 24) - ((y <<  8) >> 24))) & 0x000000FF;
    u = (abs(((x) >> 24) - ((y) >> 24))) & 0x000000FF;
#endif
    return (u + t + s + r + sum);
}

/**
  \brief   Dual 16-bit saturating addition.
  \details This function enables you to perform two 16-bit integer arithmetic additions in parallel,
           saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the saturated addition of the low halfwords, in the low halfword of the return value.\n
                 the saturated addition of the high halfwords, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \remark
                 res[15:0]  = val1[15:0]  + val2[15:0]        \n
                 res[31:16] = val1[31:16] + val2[31:16]
 */
__ALWAYS_STATIC_INLINE uint32_t __QADD16(uint32_t x, uint32_t y)
{
    int32_t r = 0, s = 0;

    r = __SSAT(((((int32_t)x << 16) >> 16) + (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
    s = __SSAT(((((int32_t)x) >> 16) + (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned saturating addition.
  \details This function enables you to perform two unsigned 16-bit integer additions, saturating
           the results to the 16-bit unsigned integer range 0 < x < 2^16 - 1.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the saturated addition of the low halfwords, in the low halfword of the return value.\n
                 the saturated addition of the high halfwords, in the high halfword of the return value.\n
                 The results are saturated to the 16-bit unsigned integer range 0 < x < 2^16 - 1.
  \remark
                 res[15:0]  = val1[15:0]  + val2[15:0]        \n
                 res[31:16] = val1[31:16] + val2[31:16]
 */
__ALWAYS_STATIC_INLINE uint32_t __UQADD16(uint32_t x, uint32_t y)
{
    int32_t r = 0, s = 0;

    r = __IUSAT((((x << 16) >> 16) + ((y << 16) >> 16)), 16) & 0x0000FFFF;
    s = __IUSAT((((x) >> 16) + ((y) >> 16)), 16) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed addition.
  \details This function enables you to perform two 16-bit signed integer additions.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the addition of the low halfwords in the low halfword of the return value.\n
                 the addition of the high halfwords in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  + val2[15:0]        \n
                 res[31:16] = val1[31:16] + val2[31:16]
 */
__ALWAYS_STATIC_INLINE uint32_t __SADD16(uint32_t x, uint32_t y)
{
    int32_t r = 0, s = 0;

    r = ((((int32_t)x << 16) >> 16) + (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;
    s = ((((int32_t)x) >> 16) + (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned addition
  \details This function enables you to perform two 16-bit unsigned integer additions.
  \param [in]    x   first two 16-bit summands for each addition.
  \param [in]    y   second two 16-bit summands for each addition.
  \return        the addition of the low halfwords in the low halfword of the return value.\n
                 the addition of the high halfwords in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  + val2[15:0]        \n
                 res[31:16] = val1[31:16] + val2[31:16]
 */
__ALWAYS_STATIC_INLINE uint32_t __UADD16(uint32_t x, uint32_t y)
{
    int32_t r = 0, s = 0;

    r = (((x << 16) >> 16) + ((y << 16) >> 16)) & 0x0000FFFF;
    s = (((x) >> 16) + ((y) >> 16)) & 0x0000FFFF;

    return ((s << 16) | (r));
}


/**
  \brief   Dual 16-bit signed addition with halved results.
  \details This function enables you to perform two signed 16-bit integer additions, halving the results.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the halved addition of the low halfwords, in the low halfword of the return value.\n
                 the halved addition of the high halfwords, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  + val2[15:0]) >> 1        \n
                 res[31:16] = (val1[31:16] + val2[31:16]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __SHADD16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((((int32_t)x << 16) >> 16) + (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
    s = (((((int32_t)x) >> 16) + (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned addition with halved results.
  \details This function enables you to perform two unsigned 16-bit integer additions, halving the results.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the halved addition of the low halfwords, in the low halfword of the return value.\n
                 the halved addition of the high halfwords, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  + val2[15:0]) >> 1        \n
                 res[31:16] = (val1[31:16] + val2[31:16]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __UHADD16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((x << 16) >> 16) + ((y << 16) >> 16)) >> 1) & 0x0000FFFF;
    s = ((((x) >> 16) + ((y) >> 16)) >> 1) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Quad 8-bit signed addition with halved results.
  \details This function enables you to perform four signed 8-bit integer additions, halving the results.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the halved addition of the first bytes from each operand, in the first byte of the return value.\n
                 the halved addition of the second bytes from each operand, in the second byte of the return value.\n
                 the halved addition of the third bytes from each operand, in the third byte of the return value.\n
                 the halved addition of the fourth bytes from each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = (val1[7:0]   + val2[7:0]  ) >> 1    \n
                 res[15:8]  = (val1[15:8]  + val2[15:8] ) >> 1    \n
                 res[23:16] = (val1[23:16] + val2[23:16]) >> 1    \n
                 res[31:24] = (val1[31:24] + val2[31:24]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __SHADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = (((((int32_t)x << 24) >> 24) + (((int32_t)y << 24) >> 24)) >> 1) & (int32_t)0x000000FF;
    s = (((((int32_t)x << 16) >> 24) + (((int32_t)y << 16) >> 24)) >> 1) & (int32_t)0x000000FF;
    t = (((((int32_t)x <<  8) >> 24) + (((int32_t)y <<  8) >> 24)) >> 1) & (int32_t)0x000000FF;
    u = (((((int32_t)x) >> 24) + (((int32_t)y) >> 24)) >> 1) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned addition with halved results.
  \details This function enables you to perform four unsigned 8-bit integer additions, halving the results.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the halved addition of the first bytes from each operand, in the first byte of the return value.\n
                 the halved addition of the second bytes from each operand, in the second byte of the return value.\n
                 the halved addition of the third bytes from each operand, in the third byte of the return value.\n
                 the halved addition of the fourth bytes from each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = (val1[7:0]   + val2[7:0]  ) >> 1    \n
                 res[15:8]  = (val1[15:8]  + val2[15:8] ) >> 1    \n
                 res[23:16] = (val1[23:16] + val2[23:16]) >> 1    \n
                 res[31:24] = (val1[31:24] + val2[31:24]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __UHADD8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = ((((x << 24) >> 24) + ((y << 24) >> 24)) >> 1) & 0x000000FF;
    s = ((((x << 16) >> 24) + ((y << 16) >> 24)) >> 1) & 0x000000FF;
    t = ((((x <<  8) >> 24) + ((y <<  8) >> 24)) >> 1) & 0x000000FF;
    u = ((((x) >> 24) + ((y) >> 24)) >> 1) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Dual 16-bit saturating subtract.
  \details This function enables you to perform two 16-bit integer subtractions in parallel,
           saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the saturated subtraction of the low halfwords, in the low halfword of the return value.\n
                 the saturated subtraction of the high halfwords, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \remark
                 res[15:0]  = val1[15:0]  - val2[15:0]        \n
                 res[31:16] = val1[31:16] - val2[31:16]
 */
__ALWAYS_STATIC_INLINE uint32_t __QSUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __SSAT(((((int32_t)x << 16) >> 16) - (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
    s = __SSAT(((((int32_t)x) >> 16) - (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned saturating subtraction.
  \details This function enables you to perform two unsigned 16-bit integer subtractions,
           saturating the results to the 16-bit unsigned integer range 0 < x < 2^16 - 1.
  \param [in]    x   first two 16-bit operands for each subtraction.
  \param [in]    y   second two 16-bit operands for each subtraction.
  \return        the saturated subtraction of the low halfwords, in the low halfword of the return value.\n
                 the saturated subtraction of the high halfwords, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \remark
                 res[15:0]  = val1[15:0]  - val2[15:0]        \n
                 res[31:16] = val1[31:16] - val2[31:16]
 */
__ALWAYS_STATIC_INLINE uint32_t __UQSUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __IUSAT((((x << 16) >> 16) - ((y << 16) >> 16)), 16) & 0x0000FFFF;
    s = __IUSAT((((x) >> 16) - ((y) >> 16)), 16) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed subtraction.
  \details This function enables you to perform two 16-bit signed integer subtractions.
  \param [in]    x   first two 16-bit operands of each subtraction.
  \param [in]    y   second two 16-bit operands of each subtraction.
  \return        the subtraction of the low halfword in the second operand from the low
                 halfword in the first operand, in the low halfword of the return value. \n
                 the subtraction of the high halfword in the second operand from the high
                 halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  - val2[15:0]        \n
                 res[31:16] = val1[31:16] - val2[31:16]
 */
__ALWAYS_STATIC_INLINE uint32_t __SSUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((int32_t)x << 16) >> 16) - (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;
    s = ((((int32_t)x) >> 16) - (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned subtract.
  \details This function enables you to perform two 16-bit unsigned integer subtractions.
  \param [in]    x   first two 16-bit operands of each subtraction.
  \param [in]    y   second two 16-bit operands of each subtraction.
  \return        the subtraction of the low halfword in the second operand from the low
                 halfword in the first operand, in the low halfword of the return value. \n
                 the subtraction of the high halfword in the second operand from the high
                 halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  - val2[15:0]        \n
                 res[31:16] = val1[31:16] - val2[31:16]
 */
__ALWAYS_STATIC_INLINE uint32_t __USUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((x << 16) >> 16) - ((y << 16) >> 16)) & 0x0000FFFF;
    s = (((x) >> 16) - ((y) >> 16)) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed subtraction with halved results.
  \details This function enables you to perform two signed 16-bit integer subtractions, halving the results.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the halved subtraction of the low halfwords, in the low halfword of the return value.\n
                 the halved subtraction of the high halfwords, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  - val2[15:0]) >> 1        \n
                 res[31:16] = (val1[31:16] - val2[31:16]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __SHSUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((((int32_t)x << 16) >> 16) - (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
    s = (((((int32_t)x) >> 16) - (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned subtraction with halved results.
  \details This function enables you to perform two unsigned 16-bit integer subtractions, halving the results.
  \param [in]    x   first two 16-bit summands.
  \param [in]    y   second two 16-bit summands.
  \return        the halved subtraction of the low halfwords, in the low halfword of the return value.\n
                 the halved subtraction of the high halfwords, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  - val2[15:0]) >> 1        \n
                 res[31:16] = (val1[31:16] - val2[31:16]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __UHSUB16(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((x << 16) >> 16) - ((y << 16) >> 16)) >> 1) & 0x0000FFFF;
    s = ((((x) >> 16) - ((y) >> 16)) >> 1) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Quad 8-bit signed addition with halved results.
  \details This function enables you to perform four signed 8-bit integer subtractions, halving the results.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the halved subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the halved subtraction of the second bytes from each operand, in the second byte of the return value.\n
                 the halved subtraction of the third bytes from each operand, in the third byte of the return value.\n
                 the halved subtraction of the fourth bytes from each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = (val1[7:0]   - val2[7:0]  ) >> 1    \n
                 res[15:8]  = (val1[15:8]  - val2[15:8] ) >> 1    \n
                 res[23:16] = (val1[23:16] - val2[23:16]) >> 1    \n
                 res[31:24] = (val1[31:24] - val2[31:24]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __SHSUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = (((((int32_t)x << 24) >> 24) - (((int32_t)y << 24) >> 24)) >> 1) & (int32_t)0x000000FF;
    s = (((((int32_t)x << 16) >> 24) - (((int32_t)y << 16) >> 24)) >> 1) & (int32_t)0x000000FF;
    t = (((((int32_t)x <<  8) >> 24) - (((int32_t)y <<  8) >> 24)) >> 1) & (int32_t)0x000000FF;
    u = (((((int32_t)x) >> 24) - (((int32_t)y) >> 24)) >> 1) & (int32_t)0x000000FF;

    return ((uint32_t)((u << 24) | (t << 16) | (s <<  8) | (r)));
}

/**
  \brief   Quad 8-bit unsigned subtraction with halved results.
  \details This function enables you to perform four unsigned 8-bit integer subtractions, halving the results.
  \param [in]    x   first four 8-bit summands.
  \param [in]    y   second four 8-bit summands.
  \return        the halved subtraction of the first bytes from each operand, in the first byte of the return value.\n
                 the halved subtraction of the second bytes from each operand, in the second byte of the return value.\n
                 the halved subtraction of the third bytes from each operand, in the third byte of the return value.\n
                 the halved subtraction of the fourth bytes from each operand, in the fourth byte of the return value.
  \remark
                 res[7:0]   = (val1[7:0]   - val2[7:0]  ) >> 1    \n
                 res[15:8]  = (val1[15:8]  - val2[15:8] ) >> 1    \n
                 res[23:16] = (val1[23:16] - val2[23:16]) >> 1    \n
                 res[31:24] = (val1[31:24] - val2[31:24]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __UHSUB8(uint32_t x, uint32_t y)
{
    int32_t r, s, t, u;

    r = ((((x << 24) >> 24) - ((y << 24) >> 24)) >> 1) & 0x000000FF;
    s = ((((x << 16) >> 24) - ((y << 16) >> 24)) >> 1) & 0x000000FF;
    t = ((((x <<  8) >> 24) - ((y <<  8) >> 24)) >> 1) & 0x000000FF;
    u = ((((x) >> 24) - ((y) >> 24)) >> 1) & 0x000000FF;

    return ((u << 24) | (t << 16) | (s <<  8) | (r));
}

/**
  \brief   Dual 16-bit add and subtract with exchange.
  \details This function enables you to exchange the halfwords of the one operand,
           then add the high halfwords and subtract the low halfwords,
           saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \param [in]    x   first operand for the subtraction in the low halfword,
                     and the first operand for the addition in the high halfword.
  \param [in]    y   second operand for the subtraction in the high halfword,
                     and the second operand for the addition in the low halfword.
  \return        the saturated subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the saturated addition of the high halfword in the first operand and the
                 low halfword in the second operand, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \remark
                 res[15:0]  = val1[15:0]  - val2[31:16]        \n
                 res[31:16] = val1[31:16] + val2[15:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __QASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __SSAT(((((int32_t)x << 16) >> 16) - (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;
    s = __SSAT(((((int32_t)x) >> 16) + (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned saturating addition and subtraction with exchange.
  \details This function enables you to exchange the halfwords of the second operand and
           perform one unsigned 16-bit integer addition and one unsigned 16-bit subtraction,
           saturating the results to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
  \param [in]    x   first operand for the subtraction in the low halfword,
                     and the first operand for the addition in the high halfword.
  \param [in]    y   second operand for the subtraction in the high halfword,
                     and the second operand for the addition in the low halfword.
  \return        the saturated subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the saturated addition of the high halfword in the first operand and the
                 low halfword in the second operand, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
  \remark
                 res[15:0]  = val1[15:0]  - val2[31:16]        \n
                 res[31:16] = val1[31:16] + val2[15:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __UQASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __IUSAT((((x << 16) >> 16) - ((y) >> 16)), 16) & 0x0000FFFF;
    s = __IUSAT((((x) >> 16) + ((y << 16) >> 16)), 16) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit addition and subtraction with exchange.
  \details It enables you to exchange the halfwords of the second operand, add the high halfwords
           and subtract the low halfwords.
  \param [in]    x   first operand for the subtraction in the low halfword,
                     and the first operand for the addition in the high halfword.
  \param [in]    y   second operand for the subtraction in the high halfword,
                     and the second operand for the addition in the low halfword.
  \return        the subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the addition of the high halfword in the first operand and the
                 low halfword in the second operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  - val2[31:16]        \n
                 res[31:16] = val1[31:16] + val2[15:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __SASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((int32_t)x << 16) >> 16) - (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;
    s = ((((int32_t)x) >> 16) + (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned addition and subtraction with exchange.
  \details This function enables you to exchange the two halfwords of the second operand,
           add the high halfwords and subtract the low halfwords.
  \param [in]    x   first operand for the subtraction in the low halfword,
                     and the first operand for the addition in the high halfword.
  \param [in]    y   second operand for the subtraction in the high halfword,
                     and the second operand for the addition in the low halfword.
  \return        the subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the addition of the high halfword in the first operand and the
                 low halfword in the second operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = val1[15:0]  - val2[31:16]        \n
                 res[31:16] = val1[31:16] + val2[15:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __UASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((x << 16) >> 16) - ((y) >> 16)) & 0x0000FFFF;
    s = (((x) >> 16) + ((y << 16) >> 16)) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed addition and subtraction with halved results.
  \details This function enables you to exchange the two halfwords of one operand, perform one
           signed 16-bit integer addition and one signed 16-bit subtraction, and halve the results.
  \param [in]    x   first 16-bit operands.
  \param [in]    y   second 16-bit operands.
  \return        the halved subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the halved addition of the low halfword in the second operand from the high
                 halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  - val2[31:16]) >> 1        \n
                 res[31:16] = (val1[31:16] + val2[15:0]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __SHASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((((int32_t)x << 16) >> 16) - (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;
    s = (((((int32_t)x) >> 16) + (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned addition and subtraction with halved results and exchange.
  \details This function enables you to exchange the halfwords of the second operand,
           add the high halfwords and subtract the low halfwords, halving the results.
  \param [in]    x   first operand for the subtraction in the low halfword, and
                     the first operand for the addition in the high halfword.
  \param [in]    y   second operand for the subtraction in the high halfword, and
                     the second operand for the addition in the low halfword.
  \return        the halved subtraction of the high halfword in the second operand from the
                 low halfword in the first operand, in the low halfword of the return value.\n
                 the halved addition of the low halfword in the second operand from the high
                 halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  - val2[31:16]) >> 1        \n
                 res[31:16] = (val1[31:16] + val2[15:0]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __UHASX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((x << 16) >> 16) - ((y) >> 16)) >> 1) & 0x0000FFFF;
    s = ((((x) >> 16) + ((y << 16) >> 16)) >> 1) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit subtract and add with exchange.
  \details This function enables you to exchange the halfwords of one operand,
           then subtract the high halfwords and add the low halfwords,
           saturating the results to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \param [in]    x   first operand for the addition in the low halfword,
                     and the first operand for the subtraction in the high halfword.
  \param [in]    y   second operand for the addition in the high halfword,
                     and the second operand for the subtraction in the low halfword.
  \return        the saturated addition of the low halfword of the first operand and the high
                 halfword of the second operand, in the low halfword of the return value.\n
                 the saturated subtraction of the low halfword of the second operand from the
                 high halfword of the first operand, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit signed integer range -2^15 <= x <= 2^15 - 1.
  \remark
                 res[15:0]  = val1[15:0]  + val2[31:16]        \n
                 res[31:16] = val1[31:16] - val2[15:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __QSAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __SSAT(((((int32_t)x << 16) >> 16) + (((int32_t)y) >> 16)), 16) & (int32_t)0x0000FFFF;
    s = __SSAT(((((int32_t)x) >> 16) - (((int32_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned saturating subtraction and addition with exchange.
  \details This function enables you to exchange the halfwords of the second operand and perform
           one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, saturating
           the results to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
  \param [in]    x   first operand for the addition in the low halfword,
                     and the first operand for the subtraction in the high halfword.
  \param [in]    y   second operand for the addition in the high halfword,
                     and the second operand for the subtraction in the low halfword.
  \return        the saturated addition of the low halfword of the first operand and the high
                 halfword of the second operand, in the low halfword of the return value.\n
                 the saturated subtraction of the low halfword of the second operand from the
                 high halfword of the first operand, in the high halfword of the return value.\n
                 The returned results are saturated to the 16-bit unsigned integer range 0 <= x <= 2^16 - 1.
  \remark
                 res[15:0]  = val1[15:0]  + val2[31:16]        \n
                 res[31:16] = val1[31:16] - val2[15:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __UQSAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = __IUSAT((((x << 16) >> 16) + ((y) >> 16)), 16) & 0x0000FFFF;
    s = __IUSAT((((x) >> 16) - ((y << 16) >> 16)), 16) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit unsigned subtract and add with exchange.
  \details This function enables you to exchange the halfwords of the second operand,
           subtract the high halfwords and add the low halfwords.
  \param [in]    x   first operand for the addition in the low halfword,
                     and the first operand for the subtraction in the high halfword.
  \param [in]    y   second operand for the addition in the high halfword,
                     and the second operand for the subtraction in the low halfword.
  \return        the addition of the low halfword of the first operand and the high
                 halfword of the second operand, in the low halfword of the return value.\n
                 the subtraction of the low halfword of the second operand from the
                 high halfword of the first operand, in the high halfword of the return value.\n
  \remark
                 res[15:0]  = val1[15:0]  + val2[31:16]        \n
                 res[31:16] = val1[31:16] - val2[15:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __USAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((x << 16) >> 16) + ((y) >> 16)) & 0x0000FFFF;
    s = (((x) >> 16) - ((y << 16) >> 16)) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed subtraction and addition with exchange.
  \details This function enables you to exchange the two halfwords of one operand and perform one
           16-bit integer subtraction and one 16-bit addition.
  \param [in]    x   first operand for the addition in the low halfword, and the first operand
                     for the subtraction in the high halfword.
  \param [in]    y   second operand for the addition in the high halfword, and the second
                     operand for the subtraction in the low halfword.
  \return        the addition of the low halfword of the first operand and the high
                 halfword of the second operand, in the low halfword of the return value.\n
                 the subtraction of the low halfword of the second operand from the
                 high halfword of the first operand, in the high halfword of the return value.\n
  \remark
                 res[15:0]  = val1[15:0]  + val2[31:16]        \n
                 res[31:16] = val1[31:16] - val2[15:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __SSAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((int32_t)x << 16) >> 16) + (((int32_t)y) >> 16)) & (int32_t)0x0000FFFF;
    s = ((((int32_t)x) >> 16) - (((int32_t)y << 16) >> 16)) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}


/**
  \brief   Dual 16-bit signed subtraction and addition with halved results.
  \details This function enables you to exchange the two halfwords of one operand, perform one signed
           16-bit integer subtraction and one signed 16-bit addition, and halve the results.
  \param [in]    x   first 16-bit operands.
  \param [in]    y   second 16-bit operands.
  \return        the halved addition of the low halfword in the first operand and the
                 high halfword in the second operand, in the low halfword of the return value.\n
                 the halved subtraction of the low halfword in the second operand from the
                 high halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  + val2[31:16]) >> 1        \n
                 res[31:16] = (val1[31:16] - val2[15:0]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __SHSAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = (((((int32_t)x << 16) >> 16) + (((int32_t)y) >> 16)) >> 1) & (int32_t)0x0000FFFF;
    s = (((((int32_t)x) >> 16) - (((int32_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;

    return ((uint32_t)((s << 16) | (r)));
}

/**
  \brief   Dual 16-bit unsigned subtraction and addition with halved results and exchange.
  \details This function enables you to exchange the halfwords of the second operand,
           subtract the high halfwords and add the low halfwords, halving the results.
  \param [in]    x   first operand for the addition in the low halfword, and
                     the first operand for the subtraction in the high halfword.
  \param [in]    y   second operand for the addition in the high halfword, and
                     the second operand for the subtraction in the low halfword.
  \return        the halved addition of the low halfword in the first operand and the
                 high halfword in the second operand, in the low halfword of the return value.\n
                 the halved subtraction of the low halfword in the second operand from the
                 high halfword in the first operand, in the high halfword of the return value.
  \remark
                 res[15:0]  = (val1[15:0]  + val2[31:16]) >> 1        \n
                 res[31:16] = (val1[31:16] - val2[15:0]) >> 1
 */
__ALWAYS_STATIC_INLINE uint32_t __UHSAX(uint32_t x, uint32_t y)
{
    int32_t r, s;

    r = ((((x << 16) >> 16) + ((y) >> 16)) >> 1) & 0x0000FFFF;
    s = ((((x) >> 16) - ((y << 16) >> 16)) >> 1) & 0x0000FFFF;

    return ((s << 16) | (r));
}

/**
  \brief   Dual 16-bit signed multiply with exchange returning difference.
  \details This function enables you to perform two 16-bit signed multiplications, subtracting
           one of the products from the other. The halfwords of the second operand are exchanged
           before performing the arithmetic. This produces top * bottom and bottom * top multiplication.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \return        the difference of the products of the two 16-bit signed multiplications.
  \remark
                 p1 = val1[15:0]  * val2[31:16]       \n
                 p2 = val1[31:16] * val2[15:0]        \n
                 res[31:0] = p1 - p2
 */
__ALWAYS_STATIC_INLINE uint32_t __SMUSDX(uint32_t x, uint32_t y)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16))));
}

/**
  \brief   Sum of dual 16-bit signed multiply with exchange.
  \details This function enables you to perform two 16-bit signed multiplications with exchanged
           halfwords of the second operand, adding the products together.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \return        the sum of the products of the two 16-bit signed multiplications with exchanged halfwords of the second operand.
  \remark
                 p1 = val1[15:0]  * val2[31:16]       \n
                 p2 = val1[31:16] * val2[15:0]        \n
                 res[31:0] = p1 + p2
 */
__ALWAYS_STATIC_INLINE uint32_t __SMUADX(uint32_t x, uint32_t y)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16))));
}


/**
  \brief   Saturating add.
  \details This function enables you to obtain the saturating add of two integers.
  \param [in]    x   first summand of the saturating add operation.
  \param [in]    y   second summand of the saturating add operation.
  \return        the saturating addition of val1 and val2.
  \remark
                 res[31:0] = SAT(val1 + SAT(val2))
 */
__ALWAYS_STATIC_INLINE int32_t __QADD(int32_t x, int32_t y)
{
    int32_t result;

    if (y >= 0) {
        if (x + y >= x) {
            result = x + y;
        } else {
            result = 0x7FFFFFFF;
        }
    } else {
        if (x + y < x) {
            result = x + y;
        } else {
            result = 0x80000000;
        }
    }

    return result;
}

/**
  \brief   Saturating subtract.
  \details This function enables you to obtain the saturating add of two integers.
  \param [in]    x   first summand of the saturating add operation.
  \param [in]    y   second summand of the saturating add operation.
  \return        the saturating addition of val1 and val2.
  \remark
                 res[31:0] = SAT(val1 - SAT(val2))
 */
__ALWAYS_STATIC_INLINE int32_t __QSUB(int32_t x, int32_t y)
{
    int64_t tmp;
    int32_t result;

    tmp = (int64_t)x - (int64_t)y;

    if (tmp > 0x7fffffff) {
        tmp = 0x7fffffff;
    } else if (tmp < (-2147483647 - 1)) {
        tmp = -2147483647 - 1;
    }

    result = tmp;
    return result;
}

/**
  \brief   Dual 16-bit signed multiply with single 32-bit accumulator.
  \details This function enables you to perform two signed 16-bit multiplications,
           adding both results to a 32-bit accumulate operand.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the product of each multiplication added to the accumulate value, as a 32-bit integer.
  \remark
                 p1 = val1[15:0]  * val2[15:0]      \n
                 p2 = val1[31:16] * val2[31:16]     \n
                 res[31:0] = p1 + p2 + val3[31:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __SMLAD(uint32_t x, uint32_t y, uint32_t sum)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
                       (((int32_t)sum))));
}

/**
  \brief   Pre-exchanged dual 16-bit signed multiply with single 32-bit accumulator.
  \details This function enables you to perform two signed 16-bit multiplications with exchanged
           halfwords of the second operand, adding both results to a 32-bit accumulate operand.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the product of each multiplication with exchanged halfwords of the second
                 operand added to the accumulate value, as a 32-bit integer.
  \remark
                 p1 = val1[15:0]  * val2[31:16]     \n
                 p2 = val1[31:16] * val2[15:0]      \n
                 res[31:0] = p1 + p2 + val3[31:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __SMLADX(uint32_t x, uint32_t y, uint32_t sum)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
                       (((int32_t)sum))));
}

/**
  \brief   Dual 16-bit signed multiply with exchange subtract with 32-bit accumulate.
  \details This function enables you to perform two 16-bit signed multiplications, take the
           difference of the products, subtracting the high halfword product from the low
           halfword product, and add the difference to a 32-bit accumulate operand.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the difference of the product of each multiplication, added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[15:0]       \n
                 p2 = val1[31:16] * val2[31:16]      \n
                 res[31:0] = p1 - p2 + val3[31:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __SMLSD(uint32_t x, uint32_t y, uint32_t sum)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
                       (((int32_t)sum))));
}

/**
  \brief   Dual 16-bit signed multiply with exchange subtract with 32-bit accumulate.
  \details This function enables you to exchange the halfwords in the second operand, then perform two 16-bit
           signed multiplications. The difference of the products is added to a 32-bit accumulate operand.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the difference of the product of each multiplication, added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[31:16]     \n
                 p2 = val1[31:16] * val2[15:0]      \n
                 res[31:0] = p1 - p2 + val3[31:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __SMLSDX(uint32_t x, uint32_t y, uint32_t sum)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
                       (((int32_t)sum))));
}

/**
  \brief   Dual 16-bit signed multiply with single 64-bit accumulator.
  \details This function enables you to perform two signed 16-bit multiplications, adding both results
           to a 64-bit accumulate operand. Overflow is only possible as a result of the 64-bit addition.
           This overflow is not detected if it occurs. Instead, the result wraps around modulo2^64.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the product of each multiplication added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[15:0]      \n
                 p2 = val1[31:16] * val2[31:16]     \n
                 sum = p1 + p2 + val3[63:32][31:0]  \n
                 res[63:32] = sum[63:32]            \n
                 res[31:0]  = sum[31:0]
 */
__ALWAYS_STATIC_INLINE uint64_t __SMLALD(uint32_t x, uint32_t y, uint64_t sum)
{
    return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
                       (((uint64_t)sum))));
}

/**
  \brief   Dual 16-bit signed multiply with exchange with single 64-bit accumulator.
  \details This function enables you to exchange the halfwords of the second operand, and perform two
           signed 16-bit multiplications, adding both results to a 64-bit accumulate operand. Overflow
           is only possible as a result of the 64-bit addition. This overflow is not detected if it occurs.
           Instead, the result wraps around modulo2^64.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the product of each multiplication added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[31:16]     \n
                 p2 = val1[31:16] * val2[15:0]      \n
                 sum = p1 + p2 + val3[63:32][31:0]  \n
                 res[63:32] = sum[63:32]            \n
                 res[31:0]  = sum[31:0]
 */
__ALWAYS_STATIC_INLINE uint64_t __SMLALDX(uint32_t x, uint32_t y, uint64_t sum)
{
    return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
                       (((uint64_t)sum))));
}

/**
  \brief   dual 16-bit signed multiply subtract with 64-bit accumulate.
  \details This function It enables you to perform two 16-bit signed multiplications, take the difference
           of the products, subtracting the high halfword product from the low halfword product, and add the
           difference to a 64-bit accumulate operand. Overflow cannot occur during the multiplications or the
           subtraction. Overflow can occur as a result of the 64-bit addition, and this overflow is not
           detected. Instead, the result wraps round to modulo2^64.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the difference of the product of each multiplication, added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[15:0]      \n
                 p2 = val1[31:16] * val2[31:16]     \n
                 res[63:32][31:0] = p1 - p2 + val3[63:32][31:0]
 */
__ALWAYS_STATIC_INLINE uint64_t __SMLSLD(uint32_t x, uint32_t y, uint64_t sum)
{
    return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16)) +
                       (((uint64_t)sum))));
}

/**
  \brief   Dual 16-bit signed multiply with exchange subtract with 64-bit accumulate.
  \details This function enables you to exchange the halfwords of the second operand, perform two 16-bit multiplications,
           adding the difference of the products to a 64-bit accumulate operand. Overflow cannot occur during the
           multiplications or the subtraction. Overflow can occur as a result of the 64-bit addition, and this overflow
           is not detected. Instead, the result wraps round to modulo2^64.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \param [in]  sum   accumulate value.
  \return        the difference of the product of each multiplication, added to the accumulate value.
  \remark
                 p1 = val1[15:0]  * val2[31:16]      \n
                 p2 = val1[31:16] * val2[15:0]       \n
                 res[63:32][31:0] = p1 - p2 + val3[63:32][31:0]
 */
__ALWAYS_STATIC_INLINE uint64_t __SMLSLDX(uint32_t x, uint32_t y, uint64_t sum)
{
    return ((uint64_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y << 16) >> 16)) +
                       (((uint64_t)sum))));
}

/**
  \brief   32-bit signed multiply with 32-bit truncated accumulator.
  \details This function enables you to perform a signed 32-bit multiplications, adding the most
           significant 32 bits of the 64-bit result to a 32-bit accumulate operand.
  \param [in]    x   first operand for multiplication.
  \param [in]    y   second operand for multiplication.
  \param [in]  sum   accumulate value.
  \return        the product of multiplication (most significant 32 bits) is added to the accumulate value, as a 32-bit integer.
  \remark
                 p = val1 * val2      \n
                 res[31:0] = p[63:32] + val3[31:0]
 */
__ALWAYS_STATIC_INLINE uint32_t __SMMLA(int32_t x, int32_t y, int32_t sum)
{
    return (uint32_t)((int32_t)((int64_t)((int64_t)x * (int64_t)y) >> 32) + sum);
}

/**
  \brief   Sum of dual 16-bit signed multiply.
  \details This function enables you to perform two 16-bit signed multiplications, adding the products together.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \return        the sum of the products of the two 16-bit signed multiplications.
  \remark
                 p1 = val1[15:0]  * val2[15:0]      \n
                 p2 = val1[31:16] * val2[31:16]     \n
                 res[31:0] = p1 + p2
 */
__ALWAYS_STATIC_INLINE uint32_t __SMUAD(uint32_t x, uint32_t y)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) +
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16))));
}

/**
  \brief   Dual 16-bit signed multiply returning difference.
  \details This function enables you to perform two 16-bit signed multiplications, taking the difference
           of the products by subtracting the high halfword product from the low halfword product.
  \param [in]    x   first 16-bit operands for each multiplication.
  \param [in]    y   second 16-bit operands for each multiplication.
  \return        the difference of the products of the two 16-bit signed multiplications.
  \remark
                 p1 = val1[15:0]  * val2[15:0]      \n
                 p2 = val1[31:16] * val2[31:16]     \n
                 res[31:0] = p1 - p2
 */
__ALWAYS_STATIC_INLINE uint32_t __SMUSD(uint32_t x, uint32_t y)
{
    return ((uint32_t)(((((int32_t)x << 16) >> 16) * (((int32_t)y << 16) >> 16)) -
                       ((((int32_t)x) >> 16) * (((int32_t)y) >> 16))));
}

/**
  \brief   Dual extracted 8-bit to 16-bit signed addition.
  \details This function enables you to extract two 8-bit values from the second operand (at bit positions
           [7:0] and [23:16]), sign-extend them to 16-bits each, and add the results to the first operand.
  \param [in]    x   values added to the sign-extended to 16-bit values.
  \param [in]    y   two 8-bit values to be extracted and sign-extended.
  \return        the addition of val1 and val2, where the 8-bit values in val2[7:0] and
                 val2[23:16] have been extracted and sign-extended prior to the addition.
  \remark
                 res[15:0]  = val1[15:0] + SignExtended(val2[7:0])      \n
                 res[31:16] = val1[31:16] + SignExtended(val2[23:16])
 */
__ALWAYS_STATIC_INLINE uint32_t __SXTAB16(uint32_t x, uint32_t y)
{
    return ((uint32_t)((((((int32_t)y << 24) >> 24) + (((int32_t)x << 16) >> 16)) & (int32_t)0x0000FFFF) |
                       (((((int32_t)y <<  8) >>  8)  + (((int32_t)x >> 16) << 16)) & (int32_t)0xFFFF0000)));
}

/**
  \brief   Extracted 16-bit to 32-bit unsigned addition.
  \details This function enables you to extract two 8-bit values from one operand, zero-extend
           them to 16 bits each, and add the results to two 16-bit values from another operand.
  \param [in]    x   values added to the zero-extended to 16-bit values.
  \param [in]    y   two 8-bit values to be extracted and zero-extended.
  \return        the addition of val1 and val2, where the 8-bit values in val2[7:0] and
                 val2[23:16] have been extracted and zero-extended prior to the addition.
  \remark
                 res[15:0]  = ZeroExt(val2[7:0]   to 16 bits) + val1[15:0]      \n
                 res[31:16] = ZeroExt(val2[31:16] to 16 bits) + val1[31:16]
 */
__ALWAYS_STATIC_INLINE uint32_t __UXTAB16(uint32_t x, uint32_t y)
{
    return ((uint32_t)(((((y << 24) >> 24) + ((x << 16) >> 16)) & 0x0000FFFF) |
                       ((((y <<  8) >>  8) + ((x >> 16) << 16)) & 0xFFFF0000)));
}

/**
  \brief   Dual extract 8-bits and sign extend each to 16-bits.
  \details This function enables you to extract two 8-bit values from an operand and sign-extend them to 16 bits each.
  \param [in]    x   two 8-bit values in val[7:0] and val[23:16] to be sign-extended.
  \return        the 8-bit values sign-extended to 16-bit values.\n
                 sign-extended value of val[7:0] in the low halfword of the return value.\n
                 sign-extended value of val[23:16] in the high halfword of the return value.
  \remark
                 res[15:0]  = SignExtended(val[7:0])       \n
                 res[31:16] = SignExtended(val[23:16])
 */
__ALWAYS_STATIC_INLINE uint32_t __SXTB16(uint32_t x)
{
    return ((uint32_t)(((((int32_t)x << 24) >> 24) & (int32_t)0x0000FFFF) |
                       ((((int32_t)x <<  8) >>  8) & (int32_t)0xFFFF0000)));
}

/**
  \brief   Dual extract 8-bits and zero-extend to 16-bits.
  \details This function enables you to extract two 8-bit values from an operand and zero-extend them to 16 bits each.
  \param [in]    x   two 8-bit values in val[7:0] and val[23:16] to be zero-extended.
  \return        the 8-bit values sign-extended to 16-bit values.\n
                 sign-extended value of val[7:0] in the low halfword of the return value.\n
                 sign-extended value of val[23:16] in the high halfword of the return value.
  \remark
                 res[15:0]  = SignExtended(val[7:0])       \n
                 res[31:16] = SignExtended(val[23:16])
 */
__ALWAYS_STATIC_INLINE uint32_t __UXTB16(uint32_t x)
{
    return ((uint32_t)((((x << 24) >> 24) & 0x0000FFFF) |
                       (((x <<  8) >>  8) & 0xFFFF0000)));
}

#endif /* _CSI_GCC_H_ */