diff options
Diffstat (limited to 'lib/rsa')
-rw-r--r-- | lib/rsa/Kconfig | 37 | ||||
-rw-r--r-- | lib/rsa/Makefile | 9 | ||||
-rw-r--r-- | lib/rsa/rsa-checksum.c | 51 | ||||
-rw-r--r-- | lib/rsa/rsa-mod-exp.c | 353 | ||||
-rw-r--r-- | lib/rsa/rsa-sign.c | 832 | ||||
-rw-r--r-- | lib/rsa/rsa-verify.c | 463 |
6 files changed, 1745 insertions, 0 deletions
diff --git a/lib/rsa/Kconfig b/lib/rsa/Kconfig new file mode 100644 index 00000000..2b33f323 --- /dev/null +++ b/lib/rsa/Kconfig @@ -0,0 +1,37 @@ +config RSA + bool "Use RSA Library" + select RSA_FREESCALE_EXP if FSL_CAAM && !ARCH_MX7 && !ARCH_MX6 && !ARCH_MX5 + select RSA_SOFTWARE_EXP if !RSA_FREESCALE_EXP + help + RSA support. This enables the RSA algorithm used for FIT image + verification in U-Boot. + See doc/uImage.FIT/signature.txt for more details. + The Modular Exponentiation algorithm in RSA is implemented using + driver model. So CONFIG_DM needs to be enabled by default for this + library to function. + The signing part is build into mkimage regardless of this + option. The software based modular exponentiation is built into + mkimage irrespective of this option. + +if RSA + +config SPL_RSA + bool "Use RSA Library within SPL" + +config RSA_SOFTWARE_EXP + bool "Enable driver for RSA Modular Exponentiation in software" + depends on DM + help + Enables driver for modular exponentiation in software. This is a RSA + algorithm used in FIT image verification. It required RSA Key as + input. + See doc/uImage.FIT/signature.txt for more details. + +config RSA_FREESCALE_EXP + bool "Enable RSA Modular Exponentiation with FSL crypto accelerator" + depends on DM && FSL_CAAM && !ARCH_MX7 && !ARCH_MX6 && !ARCH_MX5 + help + Enables driver for RSA modular exponentiation using Freescale cryptographic + accelerator - CAAM. + +endif diff --git a/lib/rsa/Makefile b/lib/rsa/Makefile new file mode 100644 index 00000000..a51c6e16 --- /dev/null +++ b/lib/rsa/Makefile @@ -0,0 +1,9 @@ +# SPDX-License-Identifier: GPL-2.0+ +# +# Copyright (c) 2013, Google Inc. +# +# (C) Copyright 2000-2007 +# Wolfgang Denk, DENX Software Engineering, wd@denx.de. + +obj-$(CONFIG_$(SPL_)FIT_SIGNATURE) += rsa-verify.o rsa-checksum.o +obj-$(CONFIG_RSA_SOFTWARE_EXP) += rsa-mod-exp.o diff --git a/lib/rsa/rsa-checksum.c b/lib/rsa/rsa-checksum.c new file mode 100644 index 00000000..e60debb7 --- /dev/null +++ b/lib/rsa/rsa-checksum.c @@ -0,0 +1,51 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright (c) 2013, Andreas Oetken. + */ + +#ifndef USE_HOSTCC +#include <common.h> +#include <fdtdec.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <asm/unaligned.h> +#include <hash.h> +#else +#include "fdt_host.h" +#endif +#include <u-boot/rsa.h> + +int hash_calculate(const char *name, + const struct image_region region[], + int region_count, uint8_t *checksum) +{ + struct hash_algo *algo; + int ret = 0; + void *ctx; + uint32_t i; + i = 0; + + ret = hash_progressive_lookup_algo(name, &algo); + if (ret) + return ret; + + ret = algo->hash_init(algo, &ctx); + if (ret) + return ret; + + for (i = 0; i < region_count - 1; i++) { + ret = algo->hash_update(algo, ctx, region[i].data, + region[i].size, 0); + if (ret) + return ret; + } + + ret = algo->hash_update(algo, ctx, region[i].data, region[i].size, 1); + if (ret) + return ret; + ret = algo->hash_finish(algo, ctx, checksum, algo->digest_size); + if (ret) + return ret; + + return 0; +} diff --git a/lib/rsa/rsa-mod-exp.c b/lib/rsa/rsa-mod-exp.c new file mode 100644 index 00000000..420ab2eb --- /dev/null +++ b/lib/rsa/rsa-mod-exp.c @@ -0,0 +1,353 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright (c) 2013, Google Inc. + */ + +#ifndef USE_HOSTCC +#include <common.h> +#include <fdtdec.h> +#include <asm/types.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <asm/types.h> +#include <asm/unaligned.h> +#else +#include "fdt_host.h" +#include "mkimage.h" +#include <fdt_support.h> +#endif +#include <u-boot/rsa.h> +#include <u-boot/rsa-mod-exp.h> + +#define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby))) + +#define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a) +#define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a)) + +/* Default public exponent for backward compatibility */ +#define RSA_DEFAULT_PUBEXP 65537 + +/** + * subtract_modulus() - subtract modulus from the given value + * + * @key: Key containing modulus to subtract + * @num: Number to subtract modulus from, as little endian word array + */ +static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[]) +{ + int64_t acc = 0; + uint i; + + for (i = 0; i < key->len; i++) { + acc += (uint64_t)num[i] - key->modulus[i]; + num[i] = (uint32_t)acc; + acc >>= 32; + } +} + +/** + * greater_equal_modulus() - check if a value is >= modulus + * + * @key: Key containing modulus to check + * @num: Number to check against modulus, as little endian word array + * @return 0 if num < modulus, 1 if num >= modulus + */ +static int greater_equal_modulus(const struct rsa_public_key *key, + uint32_t num[]) +{ + int i; + + for (i = (int)key->len - 1; i >= 0; i--) { + if (num[i] < key->modulus[i]) + return 0; + if (num[i] > key->modulus[i]) + return 1; + } + + return 1; /* equal */ +} + +/** + * montgomery_mul_add_step() - Perform montgomery multiply-add step + * + * Operation: montgomery result[] += a * b[] / n0inv % modulus + * + * @key: RSA key + * @result: Place to put result, as little endian word array + * @a: Multiplier + * @b: Multiplicand, as little endian word array + */ +static void montgomery_mul_add_step(const struct rsa_public_key *key, + uint32_t result[], const uint32_t a, const uint32_t b[]) +{ + uint64_t acc_a, acc_b; + uint32_t d0; + uint i; + + acc_a = (uint64_t)a * b[0] + result[0]; + d0 = (uint32_t)acc_a * key->n0inv; + acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a; + for (i = 1; i < key->len; i++) { + acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i]; + acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] + + (uint32_t)acc_a; + result[i - 1] = (uint32_t)acc_b; + } + + acc_a = (acc_a >> 32) + (acc_b >> 32); + + result[i - 1] = (uint32_t)acc_a; + + if (acc_a >> 32) + subtract_modulus(key, result); +} + +/** + * montgomery_mul() - Perform montgomery mutitply + * + * Operation: montgomery result[] = a[] * b[] / n0inv % modulus + * + * @key: RSA key + * @result: Place to put result, as little endian word array + * @a: Multiplier, as little endian word array + * @b: Multiplicand, as little endian word array + */ +static void montgomery_mul(const struct rsa_public_key *key, + uint32_t result[], uint32_t a[], const uint32_t b[]) +{ + uint i; + + for (i = 0; i < key->len; ++i) + result[i] = 0; + for (i = 0; i < key->len; ++i) + montgomery_mul_add_step(key, result, a[i], b); +} + +/** + * num_pub_exponent_bits() - Number of bits in the public exponent + * + * @key: RSA key + * @num_bits: Storage for the number of public exponent bits + */ +static int num_public_exponent_bits(const struct rsa_public_key *key, + int *num_bits) +{ + uint64_t exponent; + int exponent_bits; + const uint max_bits = (sizeof(exponent) * 8); + + exponent = key->exponent; + exponent_bits = 0; + + if (!exponent) { + *num_bits = exponent_bits; + return 0; + } + + for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits) + if (!(exponent >>= 1)) { + *num_bits = exponent_bits; + return 0; + } + + return -EINVAL; +} + +/** + * is_public_exponent_bit_set() - Check if a bit in the public exponent is set + * + * @key: RSA key + * @pos: The bit position to check + */ +static int is_public_exponent_bit_set(const struct rsa_public_key *key, + int pos) +{ + return key->exponent & (1ULL << pos); +} + +/** + * pow_mod() - in-place public exponentiation + * + * @key: RSA key + * @inout: Big-endian word array containing value and result + */ +static int pow_mod(const struct rsa_public_key *key, uint32_t *inout) +{ + uint32_t *result, *ptr; + uint i; + int j, k; + + /* Sanity check for stack size - key->len is in 32-bit words */ + if (key->len > RSA_MAX_KEY_BITS / 32) { + debug("RSA key words %u exceeds maximum %d\n", key->len, + RSA_MAX_KEY_BITS / 32); + return -EINVAL; + } + + uint32_t val[key->len], acc[key->len], tmp[key->len]; + uint32_t a_scaled[key->len]; + result = tmp; /* Re-use location. */ + + /* Convert from big endian byte array to little endian word array. */ + for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--) + val[i] = get_unaligned_be32(ptr); + + if (0 != num_public_exponent_bits(key, &k)) + return -EINVAL; + + if (k < 2) { + debug("Public exponent is too short (%d bits, minimum 2)\n", + k); + return -EINVAL; + } + + if (!is_public_exponent_bit_set(key, 0)) { + debug("LSB of RSA public exponent must be set.\n"); + return -EINVAL; + } + + /* the bit at e[k-1] is 1 by definition, so start with: C := M */ + montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */ + /* retain scaled version for intermediate use */ + memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0])); + + for (j = k - 2; j > 0; --j) { + montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ + + if (is_public_exponent_bit_set(key, j)) { + /* acc = tmp * val / R mod n */ + montgomery_mul(key, acc, tmp, a_scaled); + } else { + /* e[j] == 0, copy tmp back to acc for next operation */ + memcpy(acc, tmp, key->len * sizeof(acc[0])); + } + } + + /* the bit at e[0] is always 1 */ + montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ + montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */ + memcpy(result, acc, key->len * sizeof(result[0])); + + /* Make sure result < mod; result is at most 1x mod too large. */ + if (greater_equal_modulus(key, result)) + subtract_modulus(key, result); + + /* Convert to bigendian byte array */ + for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++) + put_unaligned_be32(result[i], ptr); + return 0; +} + +static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len) +{ + int i; + + for (i = 0; i < len; i++) + dst[i] = fdt32_to_cpu(src[len - 1 - i]); +} + +int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len, + struct key_prop *prop, uint8_t *out) +{ + struct rsa_public_key key; + int ret; + + if (!prop) { + debug("%s: Skipping invalid prop", __func__); + return -EBADF; + } + key.n0inv = prop->n0inv; + key.len = prop->num_bits; + + if (!prop->public_exponent) + key.exponent = RSA_DEFAULT_PUBEXP; + else + key.exponent = + fdt64_to_cpu(*((uint64_t *)(prop->public_exponent))); + + if (!key.len || !prop->modulus || !prop->rr) { + debug("%s: Missing RSA key info", __func__); + return -EFAULT; + } + + /* Sanity check for stack size */ + if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) { + debug("RSA key bits %u outside allowed range %d..%d\n", + key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS); + return -EFAULT; + } + key.len /= sizeof(uint32_t) * 8; + uint32_t key1[key.len], key2[key.len]; + + key.modulus = key1; + key.rr = key2; + rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len); + rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len); + if (!key.modulus || !key.rr) { + debug("%s: Out of memory", __func__); + return -ENOMEM; + } + + uint32_t buf[sig_len / sizeof(uint32_t)]; + + memcpy(buf, sig, sig_len); + + ret = pow_mod(&key, buf); + if (ret) + return ret; + + memcpy(out, buf, sig_len); + + return 0; +} + +#if defined(CONFIG_CMD_ZYNQ_RSA) +/** + * zynq_pow_mod - in-place public exponentiation + * + * @keyptr: RSA key + * @inout: Big-endian word array containing value and result + * @return 0 on successful calculation, otherwise failure error code + * + * FIXME: Use pow_mod() instead of zynq_pow_mod() + * pow_mod calculation required for zynq is bit different from + * pw_mod above here, hence defined zynq specific routine. + */ +int zynq_pow_mod(u32 *keyptr, u32 *inout) +{ + u32 *result, *ptr; + uint i; + struct rsa_public_key *key; + u32 val[RSA2048_BYTES], acc[RSA2048_BYTES], tmp[RSA2048_BYTES]; + + key = (struct rsa_public_key *)keyptr; + + /* Sanity check for stack size - key->len is in 32-bit words */ + if (key->len > RSA_MAX_KEY_BITS / 32) { + debug("RSA key words %u exceeds maximum %d\n", key->len, + RSA_MAX_KEY_BITS / 32); + return -EINVAL; + } + + result = tmp; /* Re-use location. */ + + for (i = 0, ptr = inout; i < key->len; i++, ptr++) + val[i] = *(ptr); + + montgomery_mul(key, acc, val, key->rr); /* axx = a * RR / R mod M */ + for (i = 0; i < 16; i += 2) { + montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */ + montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */ + } + montgomery_mul(key, result, acc, val); /* result = XX * a / R mod M */ + + /* Make sure result < mod; result is at most 1x mod too large. */ + if (greater_equal_modulus(key, result)) + subtract_modulus(key, result); + + for (i = 0, ptr = inout; i < key->len; i++, ptr++) + *ptr = result[i]; + + return 0; +} +#endif diff --git a/lib/rsa/rsa-sign.c b/lib/rsa/rsa-sign.c new file mode 100644 index 00000000..5b5905ae --- /dev/null +++ b/lib/rsa/rsa-sign.c @@ -0,0 +1,832 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright (c) 2013, Google Inc. + */ + +#include "mkimage.h" +#include <stdio.h> +#include <string.h> +#include <image.h> +#include <time.h> +#include <openssl/bn.h> +#include <openssl/rsa.h> +#include <openssl/pem.h> +#include <openssl/err.h> +#include <openssl/ssl.h> +#include <openssl/evp.h> +#include <openssl/engine.h> + +#if OPENSSL_VERSION_NUMBER >= 0x10000000L +#define HAVE_ERR_REMOVE_THREAD_STATE +#endif + +#if OPENSSL_VERSION_NUMBER < 0x10100000L || \ + (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) +static void RSA_get0_key(const RSA *r, + const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) +{ + if (n != NULL) + *n = r->n; + if (e != NULL) + *e = r->e; + if (d != NULL) + *d = r->d; +} +#endif + +static int rsa_err(const char *msg) +{ + unsigned long sslErr = ERR_get_error(); + + fprintf(stderr, "%s", msg); + fprintf(stderr, ": %s\n", + ERR_error_string(sslErr, 0)); + + return -1; +} + +/** + * rsa_pem_get_pub_key() - read a public key from a .crt file + * + * @keydir: Directory containins the key + * @name Name of key file (will have a .crt extension) + * @rsap Returns RSA object, or NULL on failure + * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) + */ +static int rsa_pem_get_pub_key(const char *keydir, const char *name, RSA **rsap) +{ + char path[1024]; + EVP_PKEY *key; + X509 *cert; + RSA *rsa; + FILE *f; + int ret; + + *rsap = NULL; + snprintf(path, sizeof(path), "%s/%s.crt", keydir, name); + f = fopen(path, "r"); + if (!f) { + fprintf(stderr, "Couldn't open RSA certificate: '%s': %s\n", + path, strerror(errno)); + return -EACCES; + } + + /* Read the certificate */ + cert = NULL; + if (!PEM_read_X509(f, &cert, NULL, NULL)) { + rsa_err("Couldn't read certificate"); + ret = -EINVAL; + goto err_cert; + } + + /* Get the public key from the certificate. */ + key = X509_get_pubkey(cert); + if (!key) { + rsa_err("Couldn't read public key\n"); + ret = -EINVAL; + goto err_pubkey; + } + + /* Convert to a RSA_style key. */ + rsa = EVP_PKEY_get1_RSA(key); + if (!rsa) { + rsa_err("Couldn't convert to a RSA style key"); + ret = -EINVAL; + goto err_rsa; + } + fclose(f); + EVP_PKEY_free(key); + X509_free(cert); + *rsap = rsa; + + return 0; + +err_rsa: + EVP_PKEY_free(key); +err_pubkey: + X509_free(cert); +err_cert: + fclose(f); + return ret; +} + +/** + * rsa_engine_get_pub_key() - read a public key from given engine + * + * @keydir: Key prefix + * @name Name of key + * @engine Engine to use + * @rsap Returns RSA object, or NULL on failure + * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) + */ +static int rsa_engine_get_pub_key(const char *keydir, const char *name, + ENGINE *engine, RSA **rsap) +{ + const char *engine_id; + char key_id[1024]; + EVP_PKEY *key; + RSA *rsa; + int ret; + + *rsap = NULL; + + engine_id = ENGINE_get_id(engine); + + if (engine_id && !strcmp(engine_id, "pkcs11")) { + if (keydir) + snprintf(key_id, sizeof(key_id), + "pkcs11:%s;object=%s;type=public", + keydir, name); + else + snprintf(key_id, sizeof(key_id), + "pkcs11:object=%s;type=public", + name); + } else if (engine_id) { + if (keydir) + snprintf(key_id, sizeof(key_id), + "%s%s", + keydir, name); + else + snprintf(key_id, sizeof(key_id), + "%s", + name); + } else { + fprintf(stderr, "Engine not supported\n"); + return -ENOTSUP; + } + + key = ENGINE_load_public_key(engine, key_id, NULL, NULL); + if (!key) + return rsa_err("Failure loading public key from engine"); + + /* Convert to a RSA_style key. */ + rsa = EVP_PKEY_get1_RSA(key); + if (!rsa) { + rsa_err("Couldn't convert to a RSA style key"); + ret = -EINVAL; + goto err_rsa; + } + + EVP_PKEY_free(key); + *rsap = rsa; + + return 0; + +err_rsa: + EVP_PKEY_free(key); + return ret; +} + +/** + * rsa_get_pub_key() - read a public key + * + * @keydir: Directory containing the key (PEM file) or key prefix (engine) + * @name Name of key file (will have a .crt extension) + * @engine Engine to use + * @rsap Returns RSA object, or NULL on failure + * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) + */ +static int rsa_get_pub_key(const char *keydir, const char *name, + ENGINE *engine, RSA **rsap) +{ + if (engine) + return rsa_engine_get_pub_key(keydir, name, engine, rsap); + return rsa_pem_get_pub_key(keydir, name, rsap); +} + +/** + * rsa_pem_get_priv_key() - read a private key from a .key file + * + * @keydir: Directory containing the key + * @name Name of key file (will have a .key extension) + * @rsap Returns RSA object, or NULL on failure + * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) + */ +static int rsa_pem_get_priv_key(const char *keydir, const char *name, + RSA **rsap) +{ + char path[1024]; + RSA *rsa; + FILE *f; + + *rsap = NULL; + snprintf(path, sizeof(path), "%s/%s.key", keydir, name); + f = fopen(path, "r"); + if (!f) { + fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n", + path, strerror(errno)); + return -ENOENT; + } + + rsa = PEM_read_RSAPrivateKey(f, 0, NULL, path); + if (!rsa) { + rsa_err("Failure reading private key"); + fclose(f); + return -EPROTO; + } + fclose(f); + *rsap = rsa; + + return 0; +} + +/** + * rsa_engine_get_priv_key() - read a private key from given engine + * + * @keydir: Key prefix + * @name Name of key + * @engine Engine to use + * @rsap Returns RSA object, or NULL on failure + * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) + */ +static int rsa_engine_get_priv_key(const char *keydir, const char *name, + ENGINE *engine, RSA **rsap) +{ + const char *engine_id; + char key_id[1024]; + EVP_PKEY *key; + RSA *rsa; + int ret; + + *rsap = NULL; + + engine_id = ENGINE_get_id(engine); + + if (engine_id && !strcmp(engine_id, "pkcs11")) { + if (keydir) + snprintf(key_id, sizeof(key_id), + "pkcs11:%s;object=%s;type=private", + keydir, name); + else + snprintf(key_id, sizeof(key_id), + "pkcs11:object=%s;type=private", + name); + } else if (engine_id) { + if (keydir) + snprintf(key_id, sizeof(key_id), + "%s%s", + keydir, name); + else + snprintf(key_id, sizeof(key_id), + "%s", + name); + } else { + fprintf(stderr, "Engine not supported\n"); + return -ENOTSUP; + } + + key = ENGINE_load_private_key(engine, key_id, NULL, NULL); + if (!key) + return rsa_err("Failure loading private key from engine"); + + /* Convert to a RSA_style key. */ + rsa = EVP_PKEY_get1_RSA(key); + if (!rsa) { + rsa_err("Couldn't convert to a RSA style key"); + ret = -EINVAL; + goto err_rsa; + } + + EVP_PKEY_free(key); + *rsap = rsa; + + return 0; + +err_rsa: + EVP_PKEY_free(key); + return ret; +} + +/** + * rsa_get_priv_key() - read a private key + * + * @keydir: Directory containing the key (PEM file) or key prefix (engine) + * @name Name of key + * @engine Engine to use for signing + * @rsap Returns RSA object, or NULL on failure + * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL) + */ +static int rsa_get_priv_key(const char *keydir, const char *name, + ENGINE *engine, RSA **rsap) +{ + if (engine) + return rsa_engine_get_priv_key(keydir, name, engine, rsap); + return rsa_pem_get_priv_key(keydir, name, rsap); +} + +static int rsa_init(void) +{ + int ret; + +#if OPENSSL_VERSION_NUMBER < 0x10100000L || \ + (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) + ret = SSL_library_init(); +#else + ret = OPENSSL_init_ssl(0, NULL); +#endif + if (!ret) { + fprintf(stderr, "Failure to init SSL library\n"); + return -1; + } +#if OPENSSL_VERSION_NUMBER < 0x10100000L || \ + (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) + SSL_load_error_strings(); + + OpenSSL_add_all_algorithms(); + OpenSSL_add_all_digests(); + OpenSSL_add_all_ciphers(); +#endif + + return 0; +} + +static int rsa_engine_init(const char *engine_id, ENGINE **pe) +{ + ENGINE *e; + int ret; + + ENGINE_load_builtin_engines(); + + e = ENGINE_by_id(engine_id); + if (!e) { + fprintf(stderr, "Engine isn't available\n"); + ret = -1; + goto err_engine_by_id; + } + + if (!ENGINE_init(e)) { + fprintf(stderr, "Couldn't initialize engine\n"); + ret = -1; + goto err_engine_init; + } + + if (!ENGINE_set_default_RSA(e)) { + fprintf(stderr, "Couldn't set engine as default for RSA\n"); + ret = -1; + goto err_set_rsa; + } + + *pe = e; + + return 0; + +err_set_rsa: + ENGINE_finish(e); +err_engine_init: + ENGINE_free(e); +err_engine_by_id: +#if OPENSSL_VERSION_NUMBER < 0x10100000L || \ + (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) + ENGINE_cleanup(); +#endif + return ret; +} + +static void rsa_remove(void) +{ +#if OPENSSL_VERSION_NUMBER < 0x10100000L || \ + (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) + CRYPTO_cleanup_all_ex_data(); + ERR_free_strings(); +#ifdef HAVE_ERR_REMOVE_THREAD_STATE + ERR_remove_thread_state(NULL); +#else + ERR_remove_state(0); +#endif + EVP_cleanup(); +#endif +} + +static void rsa_engine_remove(ENGINE *e) +{ + if (e) { + ENGINE_finish(e); + ENGINE_free(e); + } +} + +static int rsa_sign_with_key(RSA *rsa, struct padding_algo *padding_algo, + struct checksum_algo *checksum_algo, + const struct image_region region[], int region_count, + uint8_t **sigp, uint *sig_size) +{ + EVP_PKEY *key; + EVP_PKEY_CTX *ckey; + EVP_MD_CTX *context; + int ret = 0; + size_t size; + uint8_t *sig; + int i; + + key = EVP_PKEY_new(); + if (!key) + return rsa_err("EVP_PKEY object creation failed"); + + if (!EVP_PKEY_set1_RSA(key, rsa)) { + ret = rsa_err("EVP key setup failed"); + goto err_set; + } + + size = EVP_PKEY_size(key); + sig = malloc(size); + if (!sig) { + fprintf(stderr, "Out of memory for signature (%zu bytes)\n", + size); + ret = -ENOMEM; + goto err_alloc; + } + + context = EVP_MD_CTX_create(); + if (!context) { + ret = rsa_err("EVP context creation failed"); + goto err_create; + } + EVP_MD_CTX_init(context); + + ckey = EVP_PKEY_CTX_new(key, NULL); + if (!ckey) { + ret = rsa_err("EVP key context creation failed"); + goto err_create; + } + + if (EVP_DigestSignInit(context, &ckey, + checksum_algo->calculate_sign(), + NULL, key) <= 0) { + ret = rsa_err("Signer setup failed"); + goto err_sign; + } + +#ifdef CONFIG_FIT_ENABLE_RSASSA_PSS_SUPPORT + if (padding_algo && !strcmp(padding_algo->name, "pss")) { + if (EVP_PKEY_CTX_set_rsa_padding(ckey, + RSA_PKCS1_PSS_PADDING) <= 0) { + ret = rsa_err("Signer padding setup failed"); + goto err_sign; + } + } +#endif /* CONFIG_FIT_ENABLE_RSASSA_PSS_SUPPORT */ + + for (i = 0; i < region_count; i++) { + if (!EVP_DigestSignUpdate(context, region[i].data, + region[i].size)) { + ret = rsa_err("Signing data failed"); + goto err_sign; + } + } + + if (!EVP_DigestSignFinal(context, sig, &size)) { + ret = rsa_err("Could not obtain signature"); + goto err_sign; + } + + #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ + (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x02070000fL) + EVP_MD_CTX_cleanup(context); + #else + EVP_MD_CTX_reset(context); + #endif + EVP_MD_CTX_destroy(context); + EVP_PKEY_free(key); + + debug("Got signature: %d bytes, expected %zu\n", *sig_size, size); + *sigp = sig; + *sig_size = size; + + return 0; + +err_sign: + EVP_MD_CTX_destroy(context); +err_create: + free(sig); +err_alloc: +err_set: + EVP_PKEY_free(key); + return ret; +} + +int rsa_sign(struct image_sign_info *info, + const struct image_region region[], int region_count, + uint8_t **sigp, uint *sig_len) +{ + RSA *rsa; + ENGINE *e = NULL; + int ret; + + ret = rsa_init(); + if (ret) + return ret; + + if (info->engine_id) { + ret = rsa_engine_init(info->engine_id, &e); + if (ret) + goto err_engine; + } + + ret = rsa_get_priv_key(info->keydir, info->keyname, e, &rsa); + if (ret) + goto err_priv; + ret = rsa_sign_with_key(rsa, info->padding, info->checksum, region, + region_count, sigp, sig_len); + if (ret) + goto err_sign; + + RSA_free(rsa); + if (info->engine_id) + rsa_engine_remove(e); + rsa_remove(); + + return ret; + +err_sign: + RSA_free(rsa); +err_priv: + if (info->engine_id) + rsa_engine_remove(e); +err_engine: + rsa_remove(); + return ret; +} + +/* + * rsa_get_exponent(): - Get the public exponent from an RSA key + */ +static int rsa_get_exponent(RSA *key, uint64_t *e) +{ + int ret; + BIGNUM *bn_te; + const BIGNUM *key_e; + uint64_t te; + + ret = -EINVAL; + bn_te = NULL; + + if (!e) + goto cleanup; + + RSA_get0_key(key, NULL, &key_e, NULL); + if (BN_num_bits(key_e) > 64) + goto cleanup; + + *e = BN_get_word(key_e); + + if (BN_num_bits(key_e) < 33) { + ret = 0; + goto cleanup; + } + + bn_te = BN_dup(key_e); + if (!bn_te) + goto cleanup; + + if (!BN_rshift(bn_te, bn_te, 32)) + goto cleanup; + + if (!BN_mask_bits(bn_te, 32)) + goto cleanup; + + te = BN_get_word(bn_te); + te <<= 32; + *e |= te; + ret = 0; + +cleanup: + if (bn_te) + BN_free(bn_te); + + return ret; +} + +/* + * rsa_get_params(): - Get the important parameters of an RSA public key + */ +int rsa_get_params(RSA *key, uint64_t *exponent, uint32_t *n0_invp, + BIGNUM **modulusp, BIGNUM **r_squaredp) +{ + BIGNUM *big1, *big2, *big32, *big2_32; + BIGNUM *n, *r, *r_squared, *tmp; + const BIGNUM *key_n; + BN_CTX *bn_ctx = BN_CTX_new(); + int ret = 0; + + /* Initialize BIGNUMs */ + big1 = BN_new(); + big2 = BN_new(); + big32 = BN_new(); + r = BN_new(); + r_squared = BN_new(); + tmp = BN_new(); + big2_32 = BN_new(); + n = BN_new(); + if (!big1 || !big2 || !big32 || !r || !r_squared || !tmp || !big2_32 || + !n) { + fprintf(stderr, "Out of memory (bignum)\n"); + return -ENOMEM; + } + + if (0 != rsa_get_exponent(key, exponent)) + ret = -1; + + RSA_get0_key(key, &key_n, NULL, NULL); + if (!BN_copy(n, key_n) || !BN_set_word(big1, 1L) || + !BN_set_word(big2, 2L) || !BN_set_word(big32, 32L)) + ret = -1; + + /* big2_32 = 2^32 */ + if (!BN_exp(big2_32, big2, big32, bn_ctx)) + ret = -1; + + /* Calculate n0_inv = -1 / n[0] mod 2^32 */ + if (!BN_mod_inverse(tmp, n, big2_32, bn_ctx) || + !BN_sub(tmp, big2_32, tmp)) + ret = -1; + *n0_invp = BN_get_word(tmp); + + /* Calculate R = 2^(# of key bits) */ + if (!BN_set_word(tmp, BN_num_bits(n)) || + !BN_exp(r, big2, tmp, bn_ctx)) + ret = -1; + + /* Calculate r_squared = R^2 mod n */ + if (!BN_copy(r_squared, r) || + !BN_mul(tmp, r_squared, r, bn_ctx) || + !BN_mod(r_squared, tmp, n, bn_ctx)) + ret = -1; + + *modulusp = n; + *r_squaredp = r_squared; + + BN_free(big1); + BN_free(big2); + BN_free(big32); + BN_free(r); + BN_free(tmp); + BN_free(big2_32); + if (ret) { + fprintf(stderr, "Bignum operations failed\n"); + return -ENOMEM; + } + + return ret; +} + +static int fdt_add_bignum(void *blob, int noffset, const char *prop_name, + BIGNUM *num, int num_bits) +{ + int nwords = num_bits / 32; + int size; + uint32_t *buf, *ptr; + BIGNUM *tmp, *big2, *big32, *big2_32; + BN_CTX *ctx; + int ret; + + tmp = BN_new(); + big2 = BN_new(); + big32 = BN_new(); + big2_32 = BN_new(); + + /* + * Note: This code assumes that all of the above succeed, or all fail. + * In practice memory allocations generally do not fail (unless the + * process is killed), so it does not seem worth handling each of these + * as a separate case. Technicaly this could leak memory on failure, + * but a) it won't happen in practice, and b) it doesn't matter as we + * will immediately exit with a failure code. + */ + if (!tmp || !big2 || !big32 || !big2_32) { + fprintf(stderr, "Out of memory (bignum)\n"); + return -ENOMEM; + } + ctx = BN_CTX_new(); + if (!tmp) { + fprintf(stderr, "Out of memory (bignum context)\n"); + return -ENOMEM; + } + BN_set_word(big2, 2L); + BN_set_word(big32, 32L); + BN_exp(big2_32, big2, big32, ctx); /* B = 2^32 */ + + size = nwords * sizeof(uint32_t); + buf = malloc(size); + if (!buf) { + fprintf(stderr, "Out of memory (%d bytes)\n", size); + return -ENOMEM; + } + + /* Write out modulus as big endian array of integers */ + for (ptr = buf + nwords - 1; ptr >= buf; ptr--) { + BN_mod(tmp, num, big2_32, ctx); /* n = N mod B */ + *ptr = cpu_to_fdt32(BN_get_word(tmp)); + BN_rshift(num, num, 32); /* N = N/B */ + } + + /* + * We try signing with successively increasing size values, so this + * might fail several times + */ + ret = fdt_setprop(blob, noffset, prop_name, buf, size); + free(buf); + BN_free(tmp); + BN_free(big2); + BN_free(big32); + BN_free(big2_32); + + return ret ? -FDT_ERR_NOSPACE : 0; +} + +int rsa_add_verify_data(struct image_sign_info *info, void *keydest) +{ + BIGNUM *modulus, *r_squared; + uint64_t exponent; + uint32_t n0_inv; + int parent, node; + char name[100]; + int ret; + int bits; + RSA *rsa; + ENGINE *e = NULL; + + debug("%s: Getting verification data\n", __func__); + if (info->engine_id) { + ret = rsa_engine_init(info->engine_id, &e); + if (ret) + return ret; + } + ret = rsa_get_pub_key(info->keydir, info->keyname, e, &rsa); + if (ret) + goto err_get_pub_key; + ret = rsa_get_params(rsa, &exponent, &n0_inv, &modulus, &r_squared); + if (ret) + goto err_get_params; + bits = BN_num_bits(modulus); + parent = fdt_subnode_offset(keydest, 0, FIT_SIG_NODENAME); + if (parent == -FDT_ERR_NOTFOUND) { + parent = fdt_add_subnode(keydest, 0, FIT_SIG_NODENAME); + if (parent < 0) { + ret = parent; + if (ret != -FDT_ERR_NOSPACE) { + fprintf(stderr, "Couldn't create signature node: %s\n", + fdt_strerror(parent)); + } + } + } + if (ret) + goto done; + + /* Either create or overwrite the named key node */ + snprintf(name, sizeof(name), "key-%s", info->keyname); + node = fdt_subnode_offset(keydest, parent, name); + if (node == -FDT_ERR_NOTFOUND) { + node = fdt_add_subnode(keydest, parent, name); + if (node < 0) { + ret = node; + if (ret != -FDT_ERR_NOSPACE) { + fprintf(stderr, "Could not create key subnode: %s\n", + fdt_strerror(node)); + } + } + } else if (node < 0) { + fprintf(stderr, "Cannot select keys parent: %s\n", + fdt_strerror(node)); + ret = node; + } + + if (!ret) { + ret = fdt_setprop_string(keydest, node, "key-name-hint", + info->keyname); + } + if (!ret) + ret = fdt_setprop_u32(keydest, node, "rsa,num-bits", bits); + if (!ret) + ret = fdt_setprop_u32(keydest, node, "rsa,n0-inverse", n0_inv); + if (!ret) { + ret = fdt_setprop_u64(keydest, node, "rsa,exponent", exponent); + } + if (!ret) { + ret = fdt_add_bignum(keydest, node, "rsa,modulus", modulus, + bits); + } + if (!ret) { + ret = fdt_add_bignum(keydest, node, "rsa,r-squared", r_squared, + bits); + } + if (!ret) { + ret = fdt_setprop_string(keydest, node, FIT_ALGO_PROP, + info->name); + } + if (!ret && info->require_keys) { + ret = fdt_setprop_string(keydest, node, "required", + info->require_keys); + } +done: + BN_free(modulus); + BN_free(r_squared); + if (ret) + ret = ret == -FDT_ERR_NOSPACE ? -ENOSPC : -EIO; +err_get_params: + RSA_free(rsa); +err_get_pub_key: + if (info->engine_id) + rsa_engine_remove(e); + + return ret; +} diff --git a/lib/rsa/rsa-verify.c b/lib/rsa/rsa-verify.c new file mode 100644 index 00000000..82dc5132 --- /dev/null +++ b/lib/rsa/rsa-verify.c @@ -0,0 +1,463 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright (c) 2013, Google Inc. + */ + +#ifndef USE_HOSTCC +#include <common.h> +#include <fdtdec.h> +#include <asm/types.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <asm/types.h> +#include <asm/unaligned.h> +#include <dm.h> +#else +#include "fdt_host.h" +#include "mkimage.h" +#include <fdt_support.h> +#endif +#include <u-boot/rsa-mod-exp.h> +#include <u-boot/rsa.h> + +/* Default public exponent for backward compatibility */ +#define RSA_DEFAULT_PUBEXP 65537 + +/** + * rsa_verify_padding() - Verify RSA message padding is valid + * + * Verify a RSA message's padding is consistent with PKCS1.5 + * padding as described in the RSA PKCS#1 v2.1 standard. + * + * @msg: Padded message + * @pad_len: Number of expected padding bytes + * @algo: Checksum algo structure having information on DER encoding etc. + * @return 0 on success, != 0 on failure + */ +static int rsa_verify_padding(const uint8_t *msg, const int pad_len, + struct checksum_algo *algo) +{ + int ff_len; + int ret; + + /* first byte must be 0x00 */ + ret = *msg++; + /* second byte must be 0x01 */ + ret |= *msg++ ^ 0x01; + /* next ff_len bytes must be 0xff */ + ff_len = pad_len - algo->der_len - 3; + ret |= *msg ^ 0xff; + ret |= memcmp(msg, msg+1, ff_len-1); + msg += ff_len; + /* next byte must be 0x00 */ + ret |= *msg++; + /* next der_len bytes must match der_prefix */ + ret |= memcmp(msg, algo->der_prefix, algo->der_len); + + return ret; +} + +int padding_pkcs_15_verify(struct image_sign_info *info, + uint8_t *msg, int msg_len, + const uint8_t *hash, int hash_len) +{ + struct checksum_algo *checksum = info->checksum; + int ret, pad_len = msg_len - checksum->checksum_len; + + /* Check pkcs1.5 padding bytes. */ + ret = rsa_verify_padding(msg, pad_len, checksum); + if (ret) { + debug("In RSAVerify(): Padding check failed!\n"); + return -EINVAL; + } + + /* Check hash. */ + if (memcmp((uint8_t *)msg + pad_len, hash, msg_len - pad_len)) { + debug("In RSAVerify(): Hash check failed!\n"); + return -EACCES; + } + + return 0; +} + +#ifdef CONFIG_FIT_ENABLE_RSASSA_PSS_SUPPORT +static void u32_i2osp(uint32_t val, uint8_t *buf) +{ + buf[0] = (uint8_t)((val >> 24) & 0xff); + buf[1] = (uint8_t)((val >> 16) & 0xff); + buf[2] = (uint8_t)((val >> 8) & 0xff); + buf[3] = (uint8_t)((val >> 0) & 0xff); +} + +/** + * mask_generation_function1() - generate an octet string + * + * Generate an octet string used to check rsa signature. + * It use an input octet string and a hash function. + * + * @checksum: A Hash function + * @seed: Specifies an input variable octet string + * @seed_len: Size of the input octet string + * @output: Specifies the output octet string + * @output_len: Size of the output octet string + * @return 0 if the octet string was correctly generated, others on error + */ +static int mask_generation_function1(struct checksum_algo *checksum, + uint8_t *seed, int seed_len, + uint8_t *output, int output_len) +{ + struct image_region region[2]; + int ret = 0, i, i_output = 0, region_count = 2; + uint32_t counter = 0; + uint8_t buf_counter[4], *tmp; + int hash_len = checksum->checksum_len; + + memset(output, 0, output_len); + + region[0].data = seed; + region[0].size = seed_len; + region[1].data = &buf_counter[0]; + region[1].size = 4; + + tmp = malloc(hash_len); + if (!tmp) { + debug("%s: can't allocate array tmp\n", __func__); + ret = -ENOMEM; + goto out; + } + + while (i_output < output_len) { + u32_i2osp(counter, &buf_counter[0]); + + ret = checksum->calculate(checksum->name, + region, region_count, + tmp); + if (ret < 0) { + debug("%s: Error in checksum calculation\n", __func__); + goto out; + } + + i = 0; + while ((i_output < output_len) && (i < hash_len)) { + output[i_output] = tmp[i]; + i_output++; + i++; + } + + counter++; + } + +out: + free(tmp); + + return ret; +} + +static int compute_hash_prime(struct checksum_algo *checksum, + uint8_t *pad, int pad_len, + uint8_t *hash, int hash_len, + uint8_t *salt, int salt_len, + uint8_t *hprime) +{ + struct image_region region[3]; + int ret, region_count = 3; + + region[0].data = pad; + region[0].size = pad_len; + region[1].data = hash; + region[1].size = hash_len; + region[2].data = salt; + region[2].size = salt_len; + + ret = checksum->calculate(checksum->name, region, region_count, hprime); + if (ret < 0) { + debug("%s: Error in checksum calculation\n", __func__); + goto out; + } + +out: + return ret; +} + +int padding_pss_verify(struct image_sign_info *info, + uint8_t *msg, int msg_len, + const uint8_t *hash, int hash_len) +{ + uint8_t *masked_db = NULL; + int masked_db_len = msg_len - hash_len - 1; + uint8_t *h = NULL, *hprime = NULL; + int h_len = hash_len; + uint8_t *db_mask = NULL; + int db_mask_len = masked_db_len; + uint8_t *db = NULL, *salt = NULL; + int db_len = masked_db_len, salt_len = msg_len - hash_len - 2; + uint8_t pad_zero[8] = { 0 }; + int ret, i, leftmost_bits = 1; + uint8_t leftmost_mask; + struct checksum_algo *checksum = info->checksum; + + /* first, allocate everything */ + masked_db = malloc(masked_db_len); + h = malloc(h_len); + db_mask = malloc(db_mask_len); + db = malloc(db_len); + salt = malloc(salt_len); + hprime = malloc(hash_len); + if (!masked_db || !h || !db_mask || !db || !salt || !hprime) { + printf("%s: can't allocate some buffer\n", __func__); + ret = -ENOMEM; + goto out; + } + + /* step 4: check if the last byte is 0xbc */ + if (msg[msg_len - 1] != 0xbc) { + printf("%s: invalid pss padding (0xbc is missing)\n", __func__); + ret = -EINVAL; + goto out; + } + + /* step 5 */ + memcpy(masked_db, msg, masked_db_len); + memcpy(h, msg + masked_db_len, h_len); + + /* step 6 */ + leftmost_mask = (0xff >> (8 - leftmost_bits)) << (8 - leftmost_bits); + if (masked_db[0] & leftmost_mask) { + printf("%s: invalid pss padding ", __func__); + printf("(leftmost bit of maskedDB not zero)\n"); + ret = -EINVAL; + goto out; + } + + /* step 7 */ + mask_generation_function1(checksum, h, h_len, db_mask, db_mask_len); + + /* step 8 */ + for (i = 0; i < db_len; i++) + db[i] = masked_db[i] ^ db_mask[i]; + + /* step 9 */ + db[0] &= 0xff >> leftmost_bits; + + /* step 10 */ + if (db[0] != 0x01) { + printf("%s: invalid pss padding ", __func__); + printf("(leftmost byte of db isn't 0x01)\n"); + ret = EINVAL; + goto out; + } + + /* step 11 */ + memcpy(salt, &db[1], salt_len); + + /* step 12 & 13 */ + compute_hash_prime(checksum, pad_zero, 8, + (uint8_t *)hash, hash_len, + salt, salt_len, hprime); + + /* step 14 */ + ret = memcmp(h, hprime, hash_len); + +out: + free(hprime); + free(salt); + free(db); + free(db_mask); + free(h); + free(masked_db); + + return ret; +} +#endif + +/** + * rsa_verify_key() - Verify a signature against some data using RSA Key + * + * Verify a RSA PKCS1.5 signature against an expected hash using + * the RSA Key properties in prop structure. + * + * @info: Specifies key and FIT information + * @prop: Specifies key + * @sig: Signature + * @sig_len: Number of bytes in signature + * @hash: Pointer to the expected hash + * @key_len: Number of bytes in rsa key + * @return 0 if verified, -ve on error + */ +static int rsa_verify_key(struct image_sign_info *info, + struct key_prop *prop, const uint8_t *sig, + const uint32_t sig_len, const uint8_t *hash, + const uint32_t key_len) +{ + int ret; +#if !defined(USE_HOSTCC) + struct udevice *mod_exp_dev; +#endif + struct checksum_algo *checksum = info->checksum; + struct padding_algo *padding = info->padding; + int hash_len; + + if (!prop || !sig || !hash || !checksum) + return -EIO; + + if (sig_len != (prop->num_bits / 8)) { + debug("Signature is of incorrect length %d\n", sig_len); + return -EINVAL; + } + + debug("Checksum algorithm: %s", checksum->name); + + /* Sanity check for stack size */ + if (sig_len > RSA_MAX_SIG_BITS / 8) { + debug("Signature length %u exceeds maximum %d\n", sig_len, + RSA_MAX_SIG_BITS / 8); + return -EINVAL; + } + + uint8_t buf[sig_len]; + hash_len = checksum->checksum_len; + +#if !defined(USE_HOSTCC) + ret = uclass_get_device(UCLASS_MOD_EXP, 0, &mod_exp_dev); + if (ret) { + printf("RSA: Can't find Modular Exp implementation\n"); + return -EINVAL; + } + + ret = rsa_mod_exp(mod_exp_dev, sig, sig_len, prop, buf); +#else + ret = rsa_mod_exp_sw(sig, sig_len, prop, buf); +#endif + if (ret) { + debug("Error in Modular exponentation\n"); + return ret; + } + + ret = padding->verify(info, buf, key_len, hash, hash_len); + if (ret) { + debug("In RSAVerify(): padding check failed!\n"); + return ret; + } + + return 0; +} + +/** + * rsa_verify_with_keynode() - Verify a signature against some data using + * information in node with prperties of RSA Key like modulus, exponent etc. + * + * Parse sign-node and fill a key_prop structure with properties of the + * key. Verify a RSA PKCS1.5 signature against an expected hash using + * the properties parsed + * + * @info: Specifies key and FIT information + * @hash: Pointer to the expected hash + * @sig: Signature + * @sig_len: Number of bytes in signature + * @node: Node having the RSA Key properties + * @return 0 if verified, -ve on error + */ +static int rsa_verify_with_keynode(struct image_sign_info *info, + const void *hash, uint8_t *sig, + uint sig_len, int node) +{ + const void *blob = info->fdt_blob; + struct key_prop prop; + int length; + int ret = 0; + + if (node < 0) { + debug("%s: Skipping invalid node", __func__); + return -EBADF; + } + + prop.num_bits = fdtdec_get_int(blob, node, "rsa,num-bits", 0); + + prop.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0); + + prop.public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length); + if (!prop.public_exponent || length < sizeof(uint64_t)) + prop.public_exponent = NULL; + + prop.exp_len = sizeof(uint64_t); + + prop.modulus = fdt_getprop(blob, node, "rsa,modulus", NULL); + + prop.rr = fdt_getprop(blob, node, "rsa,r-squared", NULL); + + if (!prop.num_bits || !prop.modulus) { + debug("%s: Missing RSA key info", __func__); + return -EFAULT; + } + + ret = rsa_verify_key(info, &prop, sig, sig_len, hash, + info->crypto->key_len); + + return ret; +} + +int rsa_verify(struct image_sign_info *info, + const struct image_region region[], int region_count, + uint8_t *sig, uint sig_len) +{ + const void *blob = info->fdt_blob; + /* Reserve memory for maximum checksum-length */ + uint8_t hash[info->crypto->key_len]; + int ndepth, noffset; + int sig_node, node; + char name[100]; + int ret; + + /* + * Verify that the checksum-length does not exceed the + * rsa-signature-length + */ + if (info->checksum->checksum_len > + info->crypto->key_len) { + debug("%s: invlaid checksum-algorithm %s for %s\n", + __func__, info->checksum->name, info->crypto->name); + return -EINVAL; + } + + sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); + if (sig_node < 0) { + debug("%s: No signature node found\n", __func__); + return -ENOENT; + } + + /* Calculate checksum with checksum-algorithm */ + ret = info->checksum->calculate(info->checksum->name, + region, region_count, hash); + if (ret < 0) { + debug("%s: Error in checksum calculation\n", __func__); + return -EINVAL; + } + + /* See if we must use a particular key */ + if (info->required_keynode != -1) { + ret = rsa_verify_with_keynode(info, hash, sig, sig_len, + info->required_keynode); + return ret; + } + + /* Look for a key that matches our hint */ + snprintf(name, sizeof(name), "key-%s", info->keyname); + node = fdt_subnode_offset(blob, sig_node, name); + ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node); + if (!ret) + return ret; + + /* No luck, so try each of the keys in turn */ + for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth); + (noffset >= 0) && (ndepth > 0); + noffset = fdt_next_node(info->fit, noffset, &ndepth)) { + if (ndepth == 1 && noffset != node) { + ret = rsa_verify_with_keynode(info, hash, sig, sig_len, + noffset); + if (!ret) + break; + } + } + + return ret; +} |