1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
use std::ffi::CString;
use std::net::IpAddr;
use ipnetwork::IpNetwork;
use crate::data_type::ip_to_vec;
use crate::error::BuilderError;
use crate::expr::ct::{ConnTrackState, Conntrack, ConntrackKey};
use crate::expr::{
Bitwise, Byteorder, ByteorderOp, Cmp, CmpOp, ExtHdr, ExtHdrOp, HighLevelPayload,
IPv4HeaderField, IPv6HeaderField, Immediate, Masquerade, Meta, MetaType, Nat, NatType,
NetworkHeaderField, Payload, Register, Rt, RtKey, TCPHeaderField, TransportHeaderField,
UDPHeaderField, VerdictKind,
};
use crate::sys::NFT_PAYLOAD_TRANSPORT_HEADER;
use crate::{ProtocolFamily, Rule};
/// Simple protocol description. Note that it does not implement other layer 4 protocols as
/// IGMP et al. See [`Rule::igmp`] for a workaround.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum Protocol {
TCP,
UDP,
}
impl Rule {
fn match_port(mut self, port: u16, protocol: Protocol, source: bool) -> Self {
self = self.protocol(protocol);
self.add_expr(
HighLevelPayload::Transport(match protocol {
Protocol::TCP => TransportHeaderField::Tcp(if source {
TCPHeaderField::Sport
} else {
TCPHeaderField::Dport
}),
Protocol::UDP => TransportHeaderField::Udp(if source {
UDPHeaderField::Sport
} else {
UDPHeaderField::Dport
}),
})
.build(),
);
self.add_expr(Cmp::new(CmpOp::Eq, port.to_be_bytes()));
self
}
pub fn match_ip(mut self, ip: IpAddr, source: bool) -> Self {
self.add_expr(Meta::new(MetaType::NfProto));
match ip {
IpAddr::V4(addr) => {
self.add_expr(Cmp::new(CmpOp::Eq, [libc::NFPROTO_IPV4 as u8]));
self.add_expr(
HighLevelPayload::Network(NetworkHeaderField::IPv4(if source {
IPv4HeaderField::Saddr
} else {
IPv4HeaderField::Daddr
}))
.build(),
);
self.add_expr(Cmp::new(CmpOp::Eq, addr.octets()));
}
IpAddr::V6(addr) => {
self.add_expr(Cmp::new(CmpOp::Eq, [libc::NFPROTO_IPV6 as u8]));
self.add_expr(
HighLevelPayload::Network(NetworkHeaderField::IPv6(if source {
IPv6HeaderField::Saddr
} else {
IPv6HeaderField::Daddr
}))
.build(),
);
self.add_expr(Cmp::new(CmpOp::Eq, addr.octets()));
}
}
self
}
pub fn match_network(mut self, net: IpNetwork, source: bool) -> Result<Self, BuilderError> {
self.add_expr(Meta::new(MetaType::NfProto));
match net {
IpNetwork::V4(_) => {
self.add_expr(Cmp::new(CmpOp::Eq, [libc::NFPROTO_IPV4 as u8]));
self.add_expr(
HighLevelPayload::Network(NetworkHeaderField::IPv4(if source {
IPv4HeaderField::Saddr
} else {
IPv4HeaderField::Daddr
}))
.build(),
);
self.add_expr(Bitwise::new(ip_to_vec(net.mask()), 0u32.to_be_bytes())?);
}
IpNetwork::V6(_) => {
self.add_expr(Cmp::new(CmpOp::Eq, [libc::NFPROTO_IPV6 as u8]));
self.add_expr(
HighLevelPayload::Network(NetworkHeaderField::IPv6(if source {
IPv6HeaderField::Saddr
} else {
IPv6HeaderField::Daddr
}))
.build(),
);
self.add_expr(Bitwise::new(ip_to_vec(net.mask()), 0u128.to_be_bytes())?);
}
}
self.add_expr(Cmp::new(CmpOp::Eq, ip_to_vec(net.network())));
Ok(self)
}
}
impl Rule {
/// Matches ICMP packets.
pub fn icmp(mut self) -> Self {
self.add_expr(Meta::new(MetaType::L4Proto));
self.add_expr(Cmp::new(CmpOp::Eq, [libc::IPPROTO_ICMP as u8]));
self
}
/// Matches ICMPv6 packets.
pub fn icmpv6(mut self) -> Self {
self.add_expr(Meta::new(MetaType::L4Proto));
self.add_expr(Cmp::new(CmpOp::Eq, [libc::IPPROTO_ICMPV6 as u8]));
self
}
/// Matches IGMP packets.
pub fn igmp(mut self) -> Self {
self.add_expr(Meta::new(MetaType::L4Proto));
self.add_expr(Cmp::new(CmpOp::Eq, [libc::IPPROTO_IGMP as u8]));
self
}
/// Matches 4in6 packets.
pub fn ip4in6(mut self) -> Self {
self.add_expr(Meta::new(MetaType::NfProto));
self.add_expr(Cmp::new(CmpOp::Eq, [libc::NFPROTO_IPV6 as u8]));
self.add_expr(
HighLevelPayload::Network(NetworkHeaderField::IPv6(IPv6HeaderField::NextHeader))
.build(),
);
self.add_expr(Cmp::new(CmpOp::Eq, [4 as u8]));
self
}
/// Matches 6in4 packets.
pub fn ip6in4(mut self) -> Self {
self.add_expr(Meta::new(MetaType::NfProto));
self.add_expr(Cmp::new(CmpOp::Eq, [libc::NFPROTO_IPV4 as u8]));
self.add_expr(
HighLevelPayload::Network(NetworkHeaderField::IPv4(IPv4HeaderField::Protocol)).build(),
);
self.add_expr(Cmp::new(CmpOp::Eq, [41 as u8]));
self
}
/// Matches packets from source `port` and `protocol`.
pub fn sport(self, port: u16, protocol: Protocol) -> Self {
self.match_port(port, protocol, false)
}
/// Matches packets to destination `port` and `protocol`.
pub fn dport(self, port: u16, protocol: Protocol) -> Self {
self.match_port(port, protocol, false)
}
/// Matches packets on `protocol`.
pub fn protocol(mut self, protocol: Protocol) -> Self {
self.add_expr(Meta::new(MetaType::L4Proto));
self.add_expr(Cmp::new(
CmpOp::Eq,
[match protocol {
Protocol::TCP => libc::IPPROTO_TCP,
Protocol::UDP => libc::IPPROTO_UDP,
} as u8],
));
self
}
/// Matches packets in an already established connection.
pub fn established(mut self) -> Result<Self, BuilderError> {
let allowed_states = ConnTrackState::ESTABLISHED.bits();
self.add_expr(Conntrack::new(ConntrackKey::State));
self.add_expr(Bitwise::new(
allowed_states.to_le_bytes(),
0u32.to_be_bytes(),
)?);
self.add_expr(Cmp::new(CmpOp::Neq, 0u32.to_be_bytes()));
Ok(self)
}
/// Matches packets going through `iface_index`. Interface indexes can be queried with
/// `iface_index()`.
pub fn iface_id(mut self, iface_index: libc::c_uint) -> Self {
self.add_expr(Meta::new(MetaType::Iif));
self.add_expr(Cmp::new(CmpOp::Eq, iface_index.to_be_bytes()));
self
}
/// Matches packets going through `iface_name`, an interface name, as in "wlan0" or "lo"
pub fn iface(mut self, iface_name: &str) -> Result<Self, BuilderError> {
if iface_name.len() >= libc::IFNAMSIZ {
return Err(BuilderError::InterfaceNameTooLong);
}
let mut iface_vec = iface_name.as_bytes().to_vec();
// null terminator
iface_vec.push(0u8);
self.add_expr(Meta::new(MetaType::IifName));
self.add_expr(Cmp::new(CmpOp::Eq, iface_vec));
Ok(self)
}
/// Matches packets leaving through `oface_index`. Interface indexes can be queried with
/// `iface_index()`.
pub fn oface_id(mut self, oface_index: libc::c_uint) -> Self {
self.add_expr(Meta::new(MetaType::Oif));
self.add_expr(Cmp::new(CmpOp::Eq, oface_index.to_be_bytes()));
self
}
/// Matches packets leaving through `oface_name`, an interface name, as in "wlan0" or "lo"
pub fn oface(mut self, oface_name: &str) -> Result<Self, BuilderError> {
if oface_name.len() >= libc::IFNAMSIZ {
return Err(BuilderError::InterfaceNameTooLong);
}
let mut oface_vec = oface_name.as_bytes().to_vec();
// null terminator
oface_vec.push(0u8);
self.add_expr(Meta::new(MetaType::OifName));
self.add_expr(Cmp::new(CmpOp::Eq, oface_vec));
Ok(self)
}
/// Matches packets whose source IP address is `saddr`.
pub fn saddr(self, ip: IpAddr) -> Self {
self.match_ip(ip, true)
}
/// Matches packets whose destination IP address is `saddr`.
pub fn daddr(self, ip: IpAddr) -> Self {
self.match_ip(ip, false)
}
/// Matches packets whose source network is `net`.
pub fn snetwork(self, net: IpNetwork) -> Result<Self, BuilderError> {
self.match_network(net, true)
}
/// Matches packets whose destination network is `net`.
pub fn dnetwork(self, net: IpNetwork) -> Result<Self, BuilderError> {
self.match_network(net, false)
}
/// Adds the `Accept` verdict to the rule. The packet will be sent to destination.
pub fn accept(mut self) -> Self {
self.add_expr(Immediate::new_verdict(VerdictKind::Accept));
self
}
/// Adds the `Drop` verdict to the rule. The packet will be dropped.
pub fn drop(mut self) -> Self {
self.add_expr(Immediate::new_verdict(VerdictKind::Drop));
self
}
/// Adds the `Masquerade` verdict to the rule. The packet will have its
/// source address rewritten.
pub fn masquerade(mut self) -> Self {
self.add_expr(Masquerade {});
self
}
/// Adds the `Nat` verdict to the rule, with type `DNat`. The packet
/// will have its destination address and optionally port rewritten.
pub fn dnat(mut self, dst: IpAddr, port: Option<u16>) -> Self {
self.add_expr(Immediate::new_data(ip_to_vec(dst), Register::Reg1));
if let Some(port) = port {
self.add_expr(Immediate::new_data(
port.to_be_bytes().to_vec(),
Register::Reg2,
));
}
self.add_expr(Nat {
nat_type: Some(NatType::DNat),
family: Some(ProtocolFamily::Ipv4),
ip_register: Some(Register::Reg1),
port_register: port.map(|_| Register::Reg2),
});
self
}
/// Adds the `ExtHdr` expression to the rule. The packet will have
/// its MSS rewritten.
pub fn set_mss(mut self, mss: u16) -> Self {
self.add_expr(Immediate::new_data(
mss.to_be_bytes().to_vec(),
Register::Reg1,
));
self.add_expr(
ExtHdr::default()
.with_sreg(Register::Reg1)
.with_typ(2u8)
.with_offset(2u32)
.with_len(2u32)
.with_op(ExtHdrOp::TCPOpt),
);
self
}
/// Sets the TCP MSS to the path MTU observed by the routing cache.
pub fn clamp_mss_to_pmtu(mut self) -> Self {
self.add_expr(
Rt::default()
.with_dreg(Register::Reg1)
.with_key(RtKey::TCPMSS),
);
self.add_expr(
Byteorder::default()
.with_sreg(Register::Reg1)
.with_dreg(Register::Reg1)
.with_op(ByteorderOp::HtoN)
.with_len(2u32)
.with_siz(2u32),
);
self.add_expr(
ExtHdr::default()
.with_sreg(Register::Reg1)
.with_typ(2u8)
.with_offset(2u32)
.with_len(2u32)
.with_op(ExtHdrOp::TCPOpt),
);
self
}
/// Matches TCP packets whose flags include SYN.
pub fn syn(mut self) -> Result<Self, BuilderError> {
self.add_expr(
Payload::default()
.with_base(NFT_PAYLOAD_TRANSPORT_HEADER)
.with_offset(13u32)
.with_len(1u32)
.with_dreg(Register::Reg1),
);
self.add_expr(Bitwise::new(2u8.to_be_bytes(), 0u8.to_be_bytes())?);
self.add_expr(Cmp::new(CmpOp::Neq, 0u8.to_be_bytes()));
Ok(self)
}
}
/// Looks up the interface index for a given interface name.
pub fn iface_index(name: &str) -> Result<libc::c_uint, std::io::Error> {
let c_name = CString::new(name)?;
let index = unsafe { libc::if_nametoindex(c_name.as_ptr()) };
match index {
0 => Err(std::io::Error::last_os_error()),
_ => Ok(index),
}
}
|