diff options
Diffstat (limited to 'drivers/ddr/altera')
-rw-r--r-- | drivers/ddr/altera/Makefile | 3 | ||||
-rw-r--r-- | drivers/ddr/altera/sdram_n5x.c | 2298 | ||||
-rw-r--r-- | drivers/ddr/altera/sdram_soc64.c | 70 | ||||
-rw-r--r-- | drivers/ddr/altera/sdram_soc64.h | 1 |
4 files changed, 2371 insertions, 1 deletions
diff --git a/drivers/ddr/altera/Makefile b/drivers/ddr/altera/Makefile index 39dfee5d5a..9fa5d85a27 100644 --- a/drivers/ddr/altera/Makefile +++ b/drivers/ddr/altera/Makefile @@ -4,11 +4,12 @@ # Wolfgang Denk, DENX Software Engineering, wd@denx.de. # # (C) Copyright 2010, Thomas Chou <thomas@wytron.com.tw> -# Copyright (C) 2014 Altera Corporation <www.altera.com> +# Copyright (C) 2014-2021 Altera Corporation <www.altera.com> ifdef CONFIG_$(SPL_)ALTERA_SDRAM obj-$(CONFIG_TARGET_SOCFPGA_GEN5) += sdram_gen5.o sequencer.o obj-$(CONFIG_TARGET_SOCFPGA_ARRIA10) += sdram_arria10.o obj-$(CONFIG_TARGET_SOCFPGA_STRATIX10) += sdram_soc64.o sdram_s10.o obj-$(CONFIG_TARGET_SOCFPGA_AGILEX) += sdram_soc64.o sdram_agilex.o +obj-$(CONFIG_TARGET_SOCFPGA_N5X) += sdram_soc64.o sdram_n5x.o endif diff --git a/drivers/ddr/altera/sdram_n5x.c b/drivers/ddr/altera/sdram_n5x.c new file mode 100644 index 0000000000..ac13ac4319 --- /dev/null +++ b/drivers/ddr/altera/sdram_n5x.c @@ -0,0 +1,2298 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2020-2021 Intel Corporation <www.intel.com> + * + */ + +#include <common.h> +#include <clk.h> +#include <div64.h> +#include <dm.h> +#include <errno.h> +#include <fdtdec.h> +#include <hang.h> +#include <ram.h> +#include <reset.h> +#include "sdram_soc64.h" +#include <wait_bit.h> +#include <asm/arch/firewall.h> +#include <asm/arch/handoff_soc64.h> +#include <asm/arch/misc.h> +#include <asm/arch/reset_manager.h> +#include <asm/arch/system_manager.h> +#include <asm/io.h> +#include <linux/err.h> +#include <linux/sizes.h> + +DECLARE_GLOBAL_DATA_PTR; + +/* MPFE NOC registers */ +#define FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0 0xF8024050 + +/* Memory reset manager */ +#define MEM_RST_MGR_STATUS 0x8 + +/* Register and bit in memory reset manager */ +#define MEM_RST_MGR_STATUS_RESET_COMPLETE BIT(0) +#define MEM_RST_MGR_STATUS_PWROKIN_STATUS BIT(1) +#define MEM_RST_MGR_STATUS_CONTROLLER_RST BIT(2) +#define MEM_RST_MGR_STATUS_AXI_RST BIT(3) + +#define TIMEOUT_200MS 200 +#define TIMEOUT_5000MS 5000 + +/* DDR4 umctl2 */ +#define DDR4_MSTR_OFFSET 0x0 +#define DDR4_FREQ_RATIO BIT(22) + +#define DDR4_STAT_OFFSET 0x4 +#define DDR4_STAT_SELFREF_TYPE GENMASK(5, 4) +#define DDR4_STAT_SELFREF_TYPE_SHIFT 4 +#define DDR4_STAT_OPERATING_MODE GENMASK(2, 0) + +#define DDR4_MRCTRL0_OFFSET 0x10 +#define DDR4_MRCTRL0_MR_TYPE BIT(0) +#define DDR4_MRCTRL0_MPR_EN BIT(1) +#define DDR4_MRCTRL0_MR_RANK GENMASK(5, 4) +#define DDR4_MRCTRL0_MR_RANK_SHIFT 4 +#define DDR4_MRCTRL0_MR_ADDR GENMASK(15, 12) +#define DDR4_MRCTRL0_MR_ADDR_SHIFT 12 +#define DDR4_MRCTRL0_MR_WR BIT(31) + +#define DDR4_MRCTRL1_OFFSET 0x14 +#define DDR4_MRCTRL1_MR_DATA 0x3FFFF + +#define DDR4_MRSTAT_OFFSET 0x18 +#define DDR4_MRSTAT_MR_WR_BUSY BIT(0) + +#define DDR4_MRCTRL2_OFFSET 0x1C + +#define DDR4_PWRCTL_OFFSET 0x30 +#define DDR4_PWRCTL_SELFREF_EN BIT(0) +#define DDR4_PWRCTL_POWERDOWN_EN BIT(1) +#define DDR4_PWRCTL_EN_DFI_DRAM_CLK_DISABLE BIT(3) +#define DDR4_PWRCTL_SELFREF_SW BIT(5) + +#define DDR4_PWRTMG_OFFSET 0x34 +#define DDR4_HWLPCTL_OFFSET 0x38 +#define DDR4_RFSHCTL0_OFFSET 0x50 +#define DDR4_RFSHCTL1_OFFSET 0x54 + +#define DDR4_RFSHCTL3_OFFSET 0x60 +#define DDR4_RFSHCTL3_DIS_AUTO_REFRESH BIT(0) +#define DDR4_RFSHCTL3_REFRESH_MODE GENMASK(6, 4) +#define DDR4_RFSHCTL3_REFRESH_MODE_SHIFT 4 + +#define DDR4_ECCCFG0_OFFSET 0x70 +#define DDR4_ECC_MODE GENMASK(2, 0) +#define DDR4_DIS_SCRUB BIT(4) +#define LPDDR4_ECCCFG0_ECC_REGION_MAP_GRANU_SHIFT 30 +#define LPDDR4_ECCCFG0_ECC_REGION_MAP_SHIFT 8 + +#define DDR4_ECCCFG1_OFFSET 0x74 +#define LPDDR4_ECCCFG1_ECC_REGIONS_PARITY_LOCK BIT(4) + +#define DDR4_CRCPARCTL0_OFFSET 0xC0 +#define DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR BIT(1) + +#define DDR4_CRCPARCTL1_OFFSET 0xC4 +#define DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE BIT(8) +#define DDR4_CRCPARCTL1_ALERT_WAIT_FOR_SW BIT(9) + +#define DDR4_CRCPARSTAT_OFFSET 0xCC +#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_INT BIT(16) +#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_FATL_INT BIT(17) +#define DDR4_CRCPARSTAT_DFI_ALERT_ERR_NO_SW BIT(19) +#define DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW BIT(29) + +#define DDR4_INIT0_OFFSET 0xD0 +#define DDR4_INIT0_SKIP_RAM_INIT GENMASK(31, 30) + +#define DDR4_RANKCTL_OFFSET 0xF4 +#define DDR4_RANKCTL_DIFF_RANK_RD_GAP GENMASK(7, 4) +#define DDR4_RANKCTL_DIFF_RANK_WR_GAP GENMASK(11, 8) +#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB BIT(24) +#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB BIT(26) +#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_SHIFT 4 +#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_SHIFT 8 +#define DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB_SHIFT 24 +#define DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB_SHIFT 26 + +#define DDR4_RANKCTL1_OFFSET 0xF8 +#define DDR4_RANKCTL1_WR2RD_DR GENMASK(5, 0) + +#define DDR4_DRAMTMG2_OFFSET 0x108 +#define DDR4_DRAMTMG2_WR2RD GENMASK(5, 0) +#define DDR4_DRAMTMG2_RD2WR GENMASK(13, 8) +#define DDR4_DRAMTMG2_RD2WR_SHIFT 8 + +#define DDR4_DRAMTMG9_OFFSET 0x124 +#define DDR4_DRAMTMG9_W2RD_S GENMASK(5, 0) + +#define DDR4_DFITMG1_OFFSET 0x194 +#define DDR4_DFITMG1_DFI_T_WRDATA_DELAY GENMASK(20, 16) +#define DDR4_DFITMG1_DFI_T_WRDATA_SHIFT 16 + +#define DDR4_DFIMISC_OFFSET 0x1B0 +#define DDR4_DFIMISC_DFI_INIT_COMPLETE_EN BIT(0) +#define DDR4_DFIMISC_DFI_INIT_START BIT(5) + +#define DDR4_DFISTAT_OFFSET 0x1BC +#define DDR4_DFI_INIT_COMPLETE BIT(0) + +#define DDR4_DBG0_OFFSET 0x300 + +#define DDR4_DBG1_OFFSET 0x304 +#define DDR4_DBG1_DISDQ BIT(0) +#define DDR4_DBG1_DIS_HIF BIT(1) + +#define DDR4_DBGCAM_OFFSET 0x308 +#define DDR4_DBGCAM_DBG_RD_Q_EMPTY BIT(25) +#define DDR4_DBGCAM_DBG_WR_Q_EMPTY BIT(26) +#define DDR4_DBGCAM_RD_DATA_PIPELINE_EMPTY BIT(28) +#define DDR4_DBGCAM_WR_DATA_PIPELINE_EMPTY BIT(29) + +#define DDR4_SWCTL_OFFSET 0x320 +#define DDR4_SWCTL_SW_DONE BIT(0) + +#define DDR4_SWSTAT_OFFSET 0x324 +#define DDR4_SWSTAT_SW_DONE_ACK BIT(0) + +#define DDR4_PSTAT_OFFSET 0x3FC +#define DDR4_PSTAT_RD_PORT_BUSY_0 BIT(0) +#define DDR4_PSTAT_WR_PORT_BUSY_0 BIT(16) + +#define DDR4_PCTRL0_OFFSET 0x490 +#define DDR4_PCTRL0_PORT_EN BIT(0) + +#define DDR4_SBRCTL_OFFSET 0xF24 +#define DDR4_SBRCTL_SCRUB_INTERVAL 0x1FFF00 +#define DDR4_SBRCTL_SCRUB_EN BIT(0) +#define DDR4_SBRCTL_SCRUB_WRITE BIT(2) +#define DDR4_SBRCTL_SCRUB_BURST_1 BIT(4) + +#define DDR4_SBRSTAT_OFFSET 0xF28 +#define DDR4_SBRSTAT_SCRUB_BUSY BIT(0) +#define DDR4_SBRSTAT_SCRUB_DONE BIT(1) + +#define DDR4_SBRWDATA0_OFFSET 0xF2C +#define DDR4_SBRWDATA1_OFFSET 0xF30 +#define DDR4_SBRSTART0_OFFSET 0xF38 +#define DDR4_SBRSTART1_OFFSET 0xF3C +#define DDR4_SBRRANGE0_OFFSET 0xF40 +#define DDR4_SBRRANGE1_OFFSET 0xF44 + +/* DDR PHY */ +#define DDR_PHY_TXODTDRVSTREN_B0_P0 0x2009A +#define DDR_PHY_RXPBDLYTG0_R0 0x200D0 +#define DDR_PHY_DBYTE0_TXDQDLYTG0_U0_P0 0x201A0 + +#define DDR_PHY_DBYTE0_TXDQDLYTG0_U1_P0 0x203A0 +#define DDR_PHY_DBYTE1_TXDQDLYTG0_U0_P0 0x221A0 +#define DDR_PHY_DBYTE1_TXDQDLYTG0_U1_P0 0x223A0 +#define DDR_PHY_TXDQDLYTG0_COARSE_DELAY GENMASK(9, 6) +#define DDR_PHY_TXDQDLYTG0_COARSE_DELAY_SHIFT 6 + +#define DDR_PHY_CALRATE_OFFSET 0x40110 +#define DDR_PHY_CALZAP_OFFSET 0x40112 +#define DDR_PHY_SEQ0BDLY0_P0_OFFSET 0x40016 +#define DDR_PHY_SEQ0BDLY1_P0_OFFSET 0x40018 +#define DDR_PHY_SEQ0BDLY2_P0_OFFSET 0x4001A +#define DDR_PHY_SEQ0BDLY3_P0_OFFSET 0x4001C + +#define DDR_PHY_MEMRESETL_OFFSET 0x400C0 +#define DDR_PHY_MEMRESETL_VALUE BIT(0) +#define DDR_PHY_PROTECT_MEMRESET BIT(1) + +#define DDR_PHY_CALBUSY_OFFSET 0x4012E +#define DDR_PHY_CALBUSY BIT(0) + +#define DDR_PHY_TRAIN_IMEM_OFFSET 0xA0000 +#define DDR_PHY_TRAIN_DMEM_OFFSET 0xA8000 + +#define DMEM_MB_CDD_RR_1_0_OFFSET 0xA802C +#define DMEM_MB_CDD_RR_0_1_OFFSET 0xA8030 +#define DMEM_MB_CDD_WW_1_0_OFFSET 0xA8038 +#define DMEM_MB_CDD_WW_0_1_OFFSET 0xA803C +#define DMEM_MB_CDD_RW_1_1_OFFSET 0xA8046 +#define DMEM_MB_CDD_RW_1_0_OFFSET 0xA8048 +#define DMEM_MB_CDD_RW_0_1_OFFSET 0xA804A +#define DMEM_MB_CDD_RW_0_0_OFFSET 0xA804C + +#define DMEM_MB_CDD_CHA_RR_1_0_OFFSET 0xA8026 +#define DMEM_MB_CDD_CHA_RR_0_1_OFFSET 0xA8026 +#define DMEM_MB_CDD_CHB_RR_1_0_OFFSET 0xA8058 +#define DMEM_MB_CDD_CHB_RR_0_1_OFFSET 0xA805A +#define DMEM_MB_CDD_CHA_WW_1_0_OFFSET 0xA8030 +#define DMEM_MB_CDD_CHA_WW_0_1_OFFSET 0xA8030 +#define DMEM_MB_CDD_CHB_WW_1_0_OFFSET 0xA8062 +#define DMEM_MB_CDD_CHB_WW_0_1_OFFSET 0xA8064 + +#define DMEM_MB_CDD_CHA_RW_1_1_OFFSET 0xA8028 +#define DMEM_MB_CDD_CHA_RW_1_0_OFFSET 0xA8028 +#define DMEM_MB_CDD_CHA_RW_0_1_OFFSET 0xA802A +#define DMEM_MB_CDD_CHA_RW_0_0_OFFSET 0xA802A + +#define DMEM_MB_CDD_CHB_RW_1_1_OFFSET 0xA805A +#define DMEM_MB_CDD_CHB_RW_1_0_OFFSET 0xA805C +#define DMEM_MB_CDD_CHB_RW_0_1_OFFSET 0xA805c +#define DMEM_MB_CDD_CHB_RW_0_0_OFFSET 0xA805E + +#define DDR_PHY_SEQ0DISABLEFLAG0_OFFSET 0x120018 +#define DDR_PHY_SEQ0DISABLEFLAG1_OFFSET 0x12001A +#define DDR_PHY_SEQ0DISABLEFLAG2_OFFSET 0x12001C +#define DDR_PHY_SEQ0DISABLEFLAG3_OFFSET 0x12001E +#define DDR_PHY_SEQ0DISABLEFLAG4_OFFSET 0x120020 +#define DDR_PHY_SEQ0DISABLEFLAG5_OFFSET 0x120022 +#define DDR_PHY_SEQ0DISABLEFLAG6_OFFSET 0x120024 +#define DDR_PHY_SEQ0DISABLEFLAG7_OFFSET 0x120026 + +#define DDR_PHY_UCCLKHCLKENABLES_OFFSET 0x180100 +#define DDR_PHY_UCCLKHCLKENABLES_UCCLKEN BIT(0) +#define DDR_PHY_UCCLKHCLKENABLES_HCLKEN BIT(1) + +#define DDR_PHY_UCTWRITEPROT_OFFSET 0x180066 +#define DDR_PHY_UCTWRITEPROT BIT(0) + +#define DDR_PHY_APBONLY0_OFFSET 0x1A0000 +#define DDR_PHY_MICROCONTMUXSEL BIT(0) + +#define DDR_PHY_UCTSHADOWREGS_OFFSET 0x1A0008 +#define DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW BIT(0) + +#define DDR_PHY_DCTWRITEPROT_OFFSET 0x1A0062 +#define DDR_PHY_DCTWRITEPROT BIT(0) + +#define DDR_PHY_UCTWRITEONLYSHADOW_OFFSET 0x1A0064 +#define DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET 0x1A0068 + +#define DDR_PHY_MICRORESET_OFFSET 0x1A0132 +#define DDR_PHY_MICRORESET_STALL BIT(0) +#define DDR_PHY_MICRORESET_RESET BIT(3) + +#define DDR_PHY_TXODTDRVSTREN_B0_P1 0x22009A + +/* For firmware training */ +#define HW_DBG_TRACE_CONTROL_OFFSET 0x18 +#define FW_TRAINING_COMPLETED_STAT 0x07 +#define FW_TRAINING_FAILED_STAT 0xFF +#define FW_COMPLETION_MSG_ONLY_MODE 0xFF +#define FW_STREAMING_MSG_ID 0x08 +#define GET_LOWHW_DATA(x) ((x) & 0xFFFF) +#define GET_LOWB_DATA(x) ((x) & 0xFF) +#define GET_HIGHB_DATA(x) (((x) & 0xFF00) >> 8) + +/* Operating mode */ +#define OPM_INIT 0x000 +#define OPM_NORMAL 0x001 +#define OPM_PWR_D0WN 0x010 +#define OPM_SELF_SELFREF 0x011 +#define OPM_DDR4_DEEP_PWR_DOWN 0x100 + +/* Refresh mode */ +#define FIXED_1X 0 +#define FIXED_2X BIT(0) +#define FIXED_4X BIT(4) + +/* Address of mode register */ +#define MR0 0x0000 +#define MR1 0x0001 +#define MR2 0x0010 +#define MR3 0x0011 +#define MR4 0x0100 +#define MR5 0x0101 +#define MR6 0x0110 +#define MR7 0x0111 + +/* MR rank */ +#define RANK0 0x1 +#define RANK1 0x2 +#define ALL_RANK 0x3 + +#define MR5_BIT4 BIT(4) + +/* Value for ecc_region_map */ +#define ALL_PROTECTED 0x7F + +/* Region size for ECCCFG0.ecc_region_map */ +enum region_size { + ONE_EIGHT, + ONE_SIXTEENTH, + ONE_THIRTY_SECOND, + ONE_SIXTY_FOURTH +}; + +enum ddr_type { + DDRTYPE_LPDDR4_0, + DDRTYPE_LPDDR4_1, + DDRTYPE_DDR4, + DDRTYPE_UNKNOWN +}; + +/* Reset type */ +enum reset_type { + POR_RESET, + WARM_RESET, + COLD_RESET +}; + +/* DDR handoff structure */ +struct ddr_handoff { + /* Memory reset manager base */ + phys_addr_t mem_reset_base; + + /* First controller attributes */ + phys_addr_t cntlr_handoff_base; + phys_addr_t cntlr_base; + size_t cntlr_total_length; + enum ddr_type cntlr_t; + size_t cntlr_handoff_length; + + /* Second controller attributes*/ + phys_addr_t cntlr2_handoff_base; + phys_addr_t cntlr2_base; + size_t cntlr2_total_length; + enum ddr_type cntlr2_t; + size_t cntlr2_handoff_length; + + /* PHY attributes */ + phys_addr_t phy_handoff_base; + phys_addr_t phy_base; + size_t phy_total_length; + size_t phy_handoff_length; + + /* PHY engine attributes */ + phys_addr_t phy_engine_handoff_base; + size_t phy_engine_total_length; + size_t phy_engine_handoff_length; + + /* Calibration attributes */ + phys_addr_t train_imem_base; + phys_addr_t train_dmem_base; + size_t train_imem_length; + size_t train_dmem_length; +}; + +/* Message mode */ +enum message_mode { + MAJOR_MESSAGE, + STREAMING_MESSAGE +}; + +static int clr_ca_parity_error_status(phys_addr_t umctl2_base) +{ + int ret; + + debug("%s: Clear C/A parity error status in MR5[4]\n", __func__); + + /* Set mode register MRS */ + clrbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MPR_EN); + + /* Set mode register to write operation */ + setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MR_TYPE); + + /* Set the address of mode rgister to 0x101(MR5) */ + setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, + (MR5 << DDR4_MRCTRL0_MR_ADDR_SHIFT) & + DDR4_MRCTRL0_MR_ADDR); + + /* Set MR rank to rank 1 */ + setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, + (RANK1 << DDR4_MRCTRL0_MR_RANK_SHIFT) & + DDR4_MRCTRL0_MR_RANK); + + /* Clear C/A parity error status in MR5[4] */ + clrbits_le32(umctl2_base + DDR4_MRCTRL1_OFFSET, MR5_BIT4); + + /* Trigger mode register read or write operation */ + setbits_le32(umctl2_base + DDR4_MRCTRL0_OFFSET, DDR4_MRCTRL0_MR_WR); + + /* Wait for retry done */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_MRSTAT_OFFSET), DDR4_MRSTAT_MR_WR_BUSY, + false, TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" no outstanding MR transaction\n"); + return ret; + } + + return 0; +} + +static int ddr_retry_software_sequence(phys_addr_t umctl2_base) +{ + u32 value; + int ret; + + /* Check software can perform MRS/MPR/PDA? */ + value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) & + DDR4_CRCPARSTAT_DFI_ALERT_ERR_NO_SW; + + if (value) { + /* Clear interrupt bit for DFI alert error */ + setbits_le32(umctl2_base + DDR4_CRCPARCTL0_OFFSET, + DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR); + } + + debug("%s: Software can perform MRS/MPR/PDA\n", __func__); + + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_MRSTAT_OFFSET), + DDR4_MRSTAT_MR_WR_BUSY, + false, TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" no outstanding MR transaction\n"); + return ret; + } + + ret = clr_ca_parity_error_status(umctl2_base); + if (ret) + return ret; + + if (!value) { + /* Clear interrupt bit for DFI alert error */ + setbits_le32(umctl2_base + DDR4_CRCPARCTL0_OFFSET, + DDR4_CRCPARCTL0_DFI_ALERT_ERR_INIT_CLR); + } + + return 0; +} + +static int ensure_retry_procedure_complete(phys_addr_t umctl2_base) +{ + u32 value; + u32 start = get_timer(0); + int ret; + + /* Check parity/crc/error window is emptied ? */ + value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) & + DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW; + + /* Polling until parity/crc/error window is emptied */ + while (value) { + if (get_timer(start) > TIMEOUT_200MS) { + debug("%s: Timeout while waiting for", + __func__); + debug(" parity/crc/error window empty\n"); + return -ETIMEDOUT; + } + + /* Check software intervention is enabled? */ + value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) & + DDR4_CRCPARCTL1_ALERT_WAIT_FOR_SW; + if (value) { + debug("%s: Software intervention is enabled\n", + __func__); + + /* Check dfi alert error interrupt is set? */ + value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) & + DDR4_CRCPARSTAT_DFI_ALERT_ERR_INT; + + if (value) { + ret = ddr_retry_software_sequence(umctl2_base); + debug("%s: DFI alert error interrupt ", + __func__); + debug("is set\n"); + + if (ret) + return ret; + } + + /* + * Check fatal parity error interrupt is set? + */ + value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) & + DDR4_CRCPARSTAT_DFI_ALERT_ERR_FATL_INT; + if (value) { + printf("%s: Fatal parity error ", + __func__); + printf("interrupt is set, Hang it!!\n"); + hang(); + } + } + + value = readl(umctl2_base + DDR4_CRCPARSTAT_OFFSET) & + DDR4_CRCPARSTAT_CMD_IN_ERR_WINDOW; + + udelay(1); + WATCHDOG_RESET(); + } + + return 0; +} + +static int enable_quasi_dynamic_reg_grp3(phys_addr_t umctl2_base, + enum ddr_type umctl2_type) +{ + u32 i, value, backup; + int ret = 0; + + /* Disable input traffic per port */ + clrbits_le32(umctl2_base + DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN); + + /* Polling AXI port until idle */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_PSTAT_OFFSET), + DDR4_PSTAT_WR_PORT_BUSY_0 | + DDR4_PSTAT_RD_PORT_BUSY_0, false, + TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" controller idle\n"); + return ret; + } + + /* Backup user setting */ + backup = readl(umctl2_base + DDR4_DBG1_OFFSET); + + /* Disable input traffic to the controller */ + setbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DIS_HIF); + + /* + * Ensure CAM/data pipelines are empty. + * Poll until CAM/data pipelines are set at least twice, + * timeout at 200ms + */ + for (i = 0; i < 2; i++) { + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_DBGCAM_OFFSET), + DDR4_DBGCAM_WR_DATA_PIPELINE_EMPTY | + DDR4_DBGCAM_RD_DATA_PIPELINE_EMPTY | + DDR4_DBGCAM_DBG_WR_Q_EMPTY | + DDR4_DBGCAM_DBG_RD_Q_EMPTY, true, + TIMEOUT_200MS, false); + if (ret) { + debug("%s: loop(%u): Timeout while waiting for", + __func__, i + 1); + debug(" CAM/data pipelines are empty\n"); + + goto out; + } + } + + if (umctl2_type == DDRTYPE_DDR4) { + /* Check DDR4 retry is enabled ? */ + value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) & + DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE; + + if (value) { + debug("%s: DDR4 retry is enabled\n", __func__); + + ret = ensure_retry_procedure_complete(umctl2_base); + if (ret) { + debug("%s: Timeout while waiting for", + __func__); + debug(" retry procedure complete\n"); + + goto out; + } + } + } + + debug("%s: Quasi-dynamic group 3 registers are enabled\n", __func__); + +out: + /* Restore user setting */ + writel(backup, umctl2_base + DDR4_DBG1_OFFSET); + + return ret; +} + +static enum ddr_type get_ddr_type(phys_addr_t ddr_type_location) +{ + u32 ddr_type_magic = readl(ddr_type_location); + + if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_DDR4_TYPE) + return DDRTYPE_DDR4; + + if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_LPDDR4_0_TYPE) + return DDRTYPE_LPDDR4_0; + + if (ddr_type_magic == SOC64_HANDOFF_DDR_UMCTL2_LPDDR4_1_TYPE) + return DDRTYPE_LPDDR4_1; + + return DDRTYPE_UNKNOWN; +} + +static void use_lpddr4_interleaving(bool set) +{ + if (set) { + printf("Starting LPDDR4 interleaving configuration ...\n"); + setbits_le32(FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0, + BIT(5)); + } else { + printf("Starting LPDDR4 non-interleaving configuration ...\n"); + clrbits_le32(FPGA2SDRAM_MGR_MAIN_SIDEBANDMGR_FLAGOUTSET0, + BIT(5)); + } +} + +static void use_ddr4(enum ddr_type type) +{ + if (type == DDRTYPE_DDR4) { + printf("Starting DDR4 configuration ...\n"); + setbits_le32(socfpga_get_sysmgr_addr() + SYSMGR_SOC64_DDR_MODE, + SYSMGR_SOC64_DDR_MODE_MSK); + } else if (type == DDRTYPE_LPDDR4_0) { + printf("Starting LPDDR4 configuration ...\n"); + clrbits_le32(socfpga_get_sysmgr_addr() + SYSMGR_SOC64_DDR_MODE, + SYSMGR_SOC64_DDR_MODE_MSK); + + use_lpddr4_interleaving(false); + } +} + +static int scrubber_ddr_config(phys_addr_t umctl2_base, + enum ddr_type umctl2_type) +{ + u32 backup[9]; + int ret; + + /* Reset to default value, prevent scrubber stop due to lower power */ + writel(0, umctl2_base + DDR4_PWRCTL_OFFSET); + + /* Backup user settings */ + backup[0] = readl(umctl2_base + DDR4_SBRCTL_OFFSET); + backup[1] = readl(umctl2_base + DDR4_SBRWDATA0_OFFSET); + backup[2] = readl(umctl2_base + DDR4_SBRSTART0_OFFSET); + if (umctl2_type == DDRTYPE_DDR4) { + backup[3] = readl(umctl2_base + DDR4_SBRWDATA1_OFFSET); + backup[4] = readl(umctl2_base + DDR4_SBRSTART1_OFFSET); + } + backup[5] = readl(umctl2_base + DDR4_SBRRANGE0_OFFSET); + backup[6] = readl(umctl2_base + DDR4_SBRRANGE1_OFFSET); + backup[7] = readl(umctl2_base + DDR4_ECCCFG0_OFFSET); + backup[8] = readl(umctl2_base + DDR4_ECCCFG1_OFFSET); + + if (umctl2_type != DDRTYPE_DDR4) { + /* Lock ECC region, ensure this regions is not being accessed */ + setbits_le32(umctl2_base + DDR4_ECCCFG1_OFFSET, + LPDDR4_ECCCFG1_ECC_REGIONS_PARITY_LOCK); + } + /* Disable input traffic per port */ + clrbits_le32(umctl2_base + DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN); + /* Disables scrubber */ + clrbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN); + /* Polling all scrub writes data have been sent */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_BUSY, + false, TIMEOUT_5000MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" sending all scrub data\n"); + return ret; + } + + /* LPDDR4 supports inline ECC only */ + if (umctl2_type != DDRTYPE_DDR4) { + /* + * Setting all regions for protected, this is required for + * srubber to init whole LPDDR4 expect ECC region + */ + writel(((ONE_EIGHT << + LPDDR4_ECCCFG0_ECC_REGION_MAP_GRANU_SHIFT) | + (ALL_PROTECTED << LPDDR4_ECCCFG0_ECC_REGION_MAP_SHIFT)), + umctl2_base + DDR4_ECCCFG0_OFFSET); + } + + /* Scrub_burst = 1, scrub_mode = 1(performs writes) */ + writel(DDR4_SBRCTL_SCRUB_BURST_1 | DDR4_SBRCTL_SCRUB_WRITE, + umctl2_base + DDR4_SBRCTL_OFFSET); + + /* Zeroing whole DDR */ + writel(0, umctl2_base + DDR4_SBRWDATA0_OFFSET); + writel(0, umctl2_base + DDR4_SBRSTART0_OFFSET); + if (umctl2_type == DDRTYPE_DDR4) { + writel(0, umctl2_base + DDR4_SBRWDATA1_OFFSET); + writel(0, umctl2_base + DDR4_SBRSTART1_OFFSET); + } + writel(0, umctl2_base + DDR4_SBRRANGE0_OFFSET); + writel(0, umctl2_base + DDR4_SBRRANGE1_OFFSET); + + /* Enables scrubber */ + setbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN); + /* Polling all scrub writes commands have been sent */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_DONE, + true, TIMEOUT_5000MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" sending all scrub commands\n"); + return ret; + } + + /* Polling all scrub writes data have been sent */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_SBRSTAT_OFFSET), DDR4_SBRSTAT_SCRUB_BUSY, + false, TIMEOUT_5000MS, false); + if (ret) { + printf("%s: Timeout while waiting for", __func__); + printf(" sending all scrub data\n"); + return ret; + } + + /* Disables scrubber */ + clrbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, DDR4_SBRCTL_SCRUB_EN); + + /* Restore user settings */ + writel(backup[0], umctl2_base + DDR4_SBRCTL_OFFSET); + writel(backup[1], umctl2_base + DDR4_SBRWDATA0_OFFSET); + writel(backup[2], umctl2_base + DDR4_SBRSTART0_OFFSET); + if (umctl2_type == DDRTYPE_DDR4) { + writel(backup[3], umctl2_base + DDR4_SBRWDATA1_OFFSET); + writel(backup[4], umctl2_base + DDR4_SBRSTART1_OFFSET); + } + writel(backup[5], umctl2_base + DDR4_SBRRANGE0_OFFSET); + writel(backup[6], umctl2_base + DDR4_SBRRANGE1_OFFSET); + writel(backup[7], umctl2_base + DDR4_ECCCFG0_OFFSET); + writel(backup[8], umctl2_base + DDR4_ECCCFG1_OFFSET); + + /* Enables ECC scrub on scrubber */ + if (!(readl(umctl2_base + DDR4_SBRCTL_OFFSET) & + DDR4_SBRCTL_SCRUB_WRITE)) { + /* Enables scrubber */ + setbits_le32(umctl2_base + DDR4_SBRCTL_OFFSET, + DDR4_SBRCTL_SCRUB_EN); + } + + return 0; +} + +static void handoff_process(struct ddr_handoff *ddr_handoff_info, + phys_addr_t handoff_base, size_t length, + phys_addr_t base) +{ + u32 handoff_table[length]; + u32 i, value = 0; + + /* Execute configuration handoff */ + socfpga_handoff_read((void *)handoff_base, handoff_table, length); + + for (i = 0; i < length; i = i + 2) { + debug("%s: wr = 0x%08x ", __func__, handoff_table[i + 1]); + if (ddr_handoff_info && base == ddr_handoff_info->phy_base) { + /* + * Convert PHY odd offset to even offset that + * supported by ARM processor. + */ + value = handoff_table[i] << 1; + + writew(handoff_table[i + 1], + (uintptr_t)(value + base)); + debug("rd = 0x%08x ", + readw((uintptr_t)(value + base))); + debug("PHY offset: 0x%08x ", handoff_table[i + 1]); + } else { + value = handoff_table[i]; + writel(handoff_table[i + 1], (uintptr_t)(value + + base)); + debug("rd = 0x%08x ", + readl((uintptr_t)(value + base))); + } + + debug("Absolute addr: 0x%08llx, APB offset: 0x%08x\n", + value + base, value); + } +} + +static int init_umctl2(phys_addr_t umctl2_handoff_base, + phys_addr_t umctl2_base, enum ddr_type umctl2_type, + size_t umctl2_handoff_length, + u32 *user_backup) +{ + int ret; + + if (umctl2_type == DDRTYPE_DDR4) + printf("Initializing DDR4 controller ...\n"); + else if (umctl2_type == DDRTYPE_LPDDR4_0) + printf("Initializing LPDDR4_0 controller ...\n"); + else if (umctl2_type == DDRTYPE_LPDDR4_1) + printf("Initializing LPDDR4_1 controller ...\n"); + + /* Prevent controller from issuing read/write to SDRAM */ + setbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DISDQ); + + /* Put SDRAM into self-refresh */ + setbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_EN); + + /* Enable quasi-dynamic programing of the controller registers */ + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + /* Ensure the controller is in initialization mode */ + ret = wait_for_bit_le32((const void *)(umctl2_base + DDR4_STAT_OFFSET), + DDR4_STAT_OPERATING_MODE, false, TIMEOUT_200MS, + false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" init operating mode\n"); + return ret; + } + + debug("%s: UMCTL2 handoff base address = 0x%p table length = 0x%08x\n", + __func__, (u32 *)umctl2_handoff_base, + (u32)umctl2_handoff_length); + + handoff_process(NULL, umctl2_handoff_base, umctl2_handoff_length, + umctl2_base); + + /* Backup user settings, restore after DDR up running */ + *user_backup = readl(umctl2_base + DDR4_PWRCTL_OFFSET); + + /* Disable self resfresh */ + clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_EN); + + if (umctl2_type == DDRTYPE_LPDDR4_0 || + umctl2_type == DDRTYPE_LPDDR4_1) { + /* Setting selfref_sw to 1, based on lpddr4 requirement */ + setbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, + DDR4_PWRCTL_SELFREF_SW); + + /* Backup user settings, restore after DDR up running */ + user_backup++; + *user_backup = readl(umctl2_base + DDR4_INIT0_OFFSET) & + DDR4_INIT0_SKIP_RAM_INIT; + + /* + * Setting INIT0.skip_dram_init to 0x3, based on lpddr4 + * requirement + */ + setbits_le32(umctl2_base + DDR4_INIT0_OFFSET, + DDR4_INIT0_SKIP_RAM_INIT); + } + + /* Complete quasi-dynamic register programming */ + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + /* Enable controller from issuing read/write to SDRAM */ + clrbits_le32(umctl2_base + DDR4_DBG1_OFFSET, DDR4_DBG1_DISDQ); + + return 0; +} + +static int phy_pre_handoff_config(phys_addr_t umctl2_base, + enum ddr_type umctl2_type) +{ + int ret; + u32 value; + + if (umctl2_type == DDRTYPE_DDR4) { + /* Check DDR4 retry is enabled ? */ + value = readl(umctl2_base + DDR4_CRCPARCTL1_OFFSET) & + DDR4_CRCPARCTL1_CRC_PARITY_RETRY_ENABLE; + + if (value) { + debug("%s: DDR4 retry is enabled\n", __func__); + debug("%s: Disable auto refresh is not supported\n", + __func__); + } else { + /* Disable auto refresh */ + setbits_le32(umctl2_base + DDR4_RFSHCTL3_OFFSET, + DDR4_RFSHCTL3_DIS_AUTO_REFRESH); + } + } + + /* Disable selfref_en & powerdown_en, nvr disable dfi dram clk */ + clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, + DDR4_PWRCTL_EN_DFI_DRAM_CLK_DISABLE | + DDR4_PWRCTL_POWERDOWN_EN | DDR4_PWRCTL_SELFREF_EN); + + /* Enable quasi-dynamic programing of the controller registers */ + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type); + if (ret) + return ret; + + /* Masking dfi init complete */ + clrbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET, + DDR4_DFIMISC_DFI_INIT_COMPLETE_EN); + + /* Complete quasi-dynamic register programming */ + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + /* Polling programming done */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_SWSTAT_OFFSET), DDR4_SWSTAT_SW_DONE_ACK, + true, TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" programming done\n"); + } + + return ret; +} + +static int init_phy(struct ddr_handoff *ddr_handoff_info) +{ + int ret; + + printf("Initializing DDR PHY ...\n"); + + if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 || + ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) { + ret = phy_pre_handoff_config(ddr_handoff_info->cntlr_base, + ddr_handoff_info->cntlr_t); + if (ret) + return ret; + } + + if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) { + ret = phy_pre_handoff_config + (ddr_handoff_info->cntlr2_base, + ddr_handoff_info->cntlr2_t); + if (ret) + return ret; + } + + /* Execute PHY configuration handoff */ + handoff_process(ddr_handoff_info, ddr_handoff_info->phy_handoff_base, + ddr_handoff_info->phy_handoff_length, + ddr_handoff_info->phy_base); + + printf("DDR PHY configuration is completed\n"); + + return 0; +} + +static void phy_init_engine(struct ddr_handoff *handoff) +{ + printf("Load PHY Init Engine ...\n"); + + /* Execute PIE production code handoff */ + handoff_process(handoff, handoff->phy_engine_handoff_base, + handoff->phy_engine_handoff_length, handoff->phy_base); + + printf("End of loading PHY Init Engine\n"); +} + +int populate_ddr_handoff(struct ddr_handoff *handoff) +{ + phys_addr_t next_section_header; + + /* DDR handoff */ + handoff->mem_reset_base = SOC64_HANDOFF_DDR_MEMRESET_BASE; + debug("%s: DDR memory reset base = 0x%x\n", __func__, + (u32)handoff->mem_reset_base); + debug("%s: DDR memory reset address = 0x%x\n", __func__, + readl(handoff->mem_reset_base)); + + /* Beginning of DDR controller handoff */ + handoff->cntlr_handoff_base = SOC64_HANDOFF_DDR_UMCTL2_SECTION; + debug("%s: cntlr handoff base = 0x%x\n", __func__, + (u32)handoff->cntlr_handoff_base); + + /* Get 1st DDR type */ + handoff->cntlr_t = get_ddr_type(handoff->cntlr_handoff_base + + SOC64_HANDOFF_DDR_UMCTL2_TYPE_OFFSET); + if (handoff->cntlr_t == DDRTYPE_LPDDR4_1 || + handoff->cntlr_t == DDRTYPE_UNKNOWN) { + debug("%s: Wrong DDR handoff format, the 1st DDR ", __func__); + debug("type must be DDR4 or LPDDR4_0\n"); + return -ENOEXEC; + } + + /* 1st cntlr base physical address */ + handoff->cntlr_base = readl(handoff->cntlr_handoff_base + + SOC64_HANDOFF_DDR_UMCTL2_BASE_ADDR_OFFSET); + debug("%s: cntlr base = 0x%x\n", __func__, (u32)handoff->cntlr_base); + + /* Get the total length of DDR cntlr handoff section */ + handoff->cntlr_total_length = readl(handoff->cntlr_handoff_base + + SOC64_HANDOFF_OFFSET_LENGTH); + debug("%s: Umctl2 total length in byte = 0x%x\n", __func__, + (u32)handoff->cntlr_total_length); + + /* Get the length of user setting data in DDR cntlr handoff section */ + handoff->cntlr_handoff_length = socfpga_get_handoff_size((void *) + handoff->cntlr_handoff_base); + debug("%s: Umctl2 handoff length in word(32-bit) = 0x%x\n", __func__, + (u32)handoff->cntlr_handoff_length); + + /* Wrong format on user setting data */ + if (handoff->cntlr_handoff_length < 0) { + debug("%s: Wrong format on user setting data\n", __func__); + return -ENOEXEC; + } + + /* Get the next handoff section address */ + next_section_header = handoff->cntlr_handoff_base + + handoff->cntlr_total_length; + debug("%s: Next handoff section header location = 0x%llx\n", __func__, + next_section_header); + + /* + * Checking next section handoff is cntlr or PHY, and changing + * subsequent implementation accordingly + */ + if (readl(next_section_header) == SOC64_HANDOFF_DDR_UMCTL2_MAGIC) { + /* Get the next cntlr handoff section address */ + handoff->cntlr2_handoff_base = next_section_header; + debug("%s: umctl2 2nd handoff base = 0x%x\n", __func__, + (u32)handoff->cntlr2_handoff_base); + + /* Get 2nd DDR type */ + handoff->cntlr2_t = get_ddr_type(handoff->cntlr2_handoff_base + + SOC64_HANDOFF_DDR_UMCTL2_TYPE_OFFSET); + if (handoff->cntlr2_t == DDRTYPE_LPDDR4_0 || + handoff->cntlr2_t == DDRTYPE_UNKNOWN) { + debug("%s: Wrong DDR handoff format, the 2nd DDR ", + __func__); + debug("type must be LPDDR4_1\n"); + return -ENOEXEC; + } + + /* 2nd umctl2 base physical address */ + handoff->cntlr2_base = + readl(handoff->cntlr2_handoff_base + + SOC64_HANDOFF_DDR_UMCTL2_BASE_ADDR_OFFSET); + debug("%s: cntlr2 base = 0x%x\n", __func__, + (u32)handoff->cntlr2_base); + + /* Get the total length of 2nd DDR umctl2 handoff section */ + handoff->cntlr2_total_length = + readl(handoff->cntlr2_handoff_base + + SOC64_HANDOFF_OFFSET_LENGTH); + debug("%s: Umctl2_2nd total length in byte = 0x%x\n", __func__, + (u32)handoff->cntlr2_total_length); + + /* + * Get the length of user setting data in DDR umctl2 handoff + * section + */ + handoff->cntlr2_handoff_length = + socfpga_get_handoff_size((void *) + handoff->cntlr2_handoff_base); + debug("%s: cntlr2 handoff length in word(32-bit) = 0x%x\n", + __func__, + (u32)handoff->cntlr2_handoff_length); + + /* Wrong format on user setting data */ + if (handoff->cntlr2_handoff_length < 0) { + debug("%s: Wrong format on umctl2 user setting data\n", + __func__); + return -ENOEXEC; + } + + /* Get the next handoff section address */ + next_section_header = handoff->cntlr2_handoff_base + + handoff->cntlr2_total_length; + debug("%s: Next handoff section header location = 0x%llx\n", + __func__, next_section_header); + } + + /* Checking next section handoff is PHY ? */ + if (readl(next_section_header) == SOC64_HANDOFF_DDR_PHY_MAGIC) { + /* DDR PHY handoff */ + handoff->phy_handoff_base = next_section_header; + debug("%s: PHY handoff base = 0x%x\n", __func__, + (u32)handoff->phy_handoff_base); + + /* PHY base physical address */ + handoff->phy_base = readl(handoff->phy_handoff_base + + SOC64_HANDOFF_DDR_PHY_BASE_OFFSET); + debug("%s: PHY base = 0x%x\n", __func__, + (u32)handoff->phy_base); + + /* Get the total length of PHY handoff section */ + handoff->phy_total_length = readl(handoff->phy_handoff_base + + SOC64_HANDOFF_OFFSET_LENGTH); + debug("%s: PHY total length in byte = 0x%x\n", __func__, + (u32)handoff->phy_total_length); + + /* + * Get the length of user setting data in DDR PHY handoff + * section + */ + handoff->phy_handoff_length = socfpga_get_handoff_size((void *) + handoff->phy_handoff_base); + debug("%s: PHY handoff length in word(32-bit) = 0x%x\n", + __func__, (u32)handoff->phy_handoff_length); + + /* Wrong format on PHY user setting data */ + if (handoff->phy_handoff_length < 0) { + debug("%s: Wrong format on PHY user setting data\n", + __func__); + return -ENOEXEC; + } + + /* Get the next handoff section address */ + next_section_header = handoff->phy_handoff_base + + handoff->phy_total_length; + debug("%s: Next handoff section header location = 0x%llx\n", + __func__, next_section_header); + } else { + debug("%s: Wrong format for DDR handoff, expect PHY", + __func__); + debug(" handoff section after umctl2 handoff section\n"); + return -ENOEXEC; + } + + /* Checking next section handoff is PHY init Engine ? */ + if (readl(next_section_header) == + SOC64_HANDOFF_DDR_PHY_INIT_ENGINE_MAGIC) { + /* DDR PHY Engine handoff */ + handoff->phy_engine_handoff_base = next_section_header; + debug("%s: PHY init engine handoff base = 0x%x\n", __func__, + (u32)handoff->phy_engine_handoff_base); + + /* Get the total length of PHY init engine handoff section */ + handoff->phy_engine_total_length = + readl(handoff->phy_engine_handoff_base + + SOC64_HANDOFF_OFFSET_LENGTH); + debug("%s: PHY engine total length in byte = 0x%x\n", __func__, + (u32)handoff->phy_engine_total_length); + + /* + * Get the length of user setting data in DDR PHY init engine + * handoff section + */ + handoff->phy_engine_handoff_length = + socfpga_get_handoff_size((void *) + handoff->phy_engine_handoff_base); + debug("%s: PHY engine handoff length in word(32-bit) = 0x%x\n", + __func__, (u32)handoff->phy_engine_handoff_length); + + /* Wrong format on PHY init engine setting data */ + if (handoff->phy_engine_handoff_length < 0) { + debug("%s: Wrong format on PHY init engine ", + __func__); + debug("user setting data\n"); + return -ENOEXEC; + } + } else { + debug("%s: Wrong format for DDR handoff, expect PHY", + __func__); + debug(" init engine handoff section after PHY handoff\n"); + debug(" section\n"); + return -ENOEXEC; + } + + handoff->train_imem_base = handoff->phy_base + + DDR_PHY_TRAIN_IMEM_OFFSET; + debug("%s: PHY train IMEM base = 0x%x\n", + __func__, (u32)handoff->train_imem_base); + + handoff->train_dmem_base = handoff->phy_base + + DDR_PHY_TRAIN_DMEM_OFFSET; + debug("%s: PHY train DMEM base = 0x%x\n", + __func__, (u32)handoff->train_dmem_base); + + handoff->train_imem_length = SOC64_HANDOFF_DDR_TRAIN_IMEM_LENGTH; + debug("%s: PHY train IMEM length = 0x%x\n", + __func__, (u32)handoff->train_imem_length); + + handoff->train_dmem_length = SOC64_HANDOFF_DDR_TRAIN_DMEM_LENGTH; + debug("%s: PHY train DMEM length = 0x%x\n", + __func__, (u32)handoff->train_dmem_length); + + return 0; +} + +int enable_ddr_clock(struct udevice *dev) +{ + struct clk *ddr_clk; + int ret; + + /* Enable clock before init DDR */ + ddr_clk = devm_clk_get(dev, "mem_clk"); + if (!IS_ERR(ddr_clk)) { + ret = clk_enable(ddr_clk); + if (ret) { + printf("%s: Failed to enable DDR clock\n", __func__); + return ret; + } + } else { + ret = PTR_ERR(ddr_clk); + debug("%s: Failed to get DDR clock from dts\n", __func__); + return ret; + } + + printf("%s: DDR clock is enabled\n", __func__); + + return 0; +} + +static int ddr_start_dfi_init(phys_addr_t umctl2_base, + enum ddr_type umctl2_type) +{ + int ret; + + debug("%s: Start DFI init\n", __func__); + + /* Enable quasi-dynamic programing of controller registers */ + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type); + if (ret) + return ret; + + /* Start DFI init sequence */ + setbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET, + DDR4_DFIMISC_DFI_INIT_START); + + /* Complete quasi-dynamic register programming */ + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + /* Polling programming done */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_SWSTAT_OFFSET), + DDR4_SWSTAT_SW_DONE_ACK, true, + TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" programming done\n"); + } + + return ret; +} + +static int ddr_check_dfi_init_complete(phys_addr_t umctl2_base, + enum ddr_type umctl2_type) +{ + int ret; + + /* Polling DFI init complete */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_DFISTAT_OFFSET), + DDR4_DFI_INIT_COMPLETE, true, + TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" DFI init done\n"); + return ret; + } + + debug("%s: DFI init completed.\n", __func__); + + /* Enable quasi-dynamic programing of controller registers */ + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type); + if (ret) + return ret; + + /* Stop DFI init sequence */ + clrbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET, + DDR4_DFIMISC_DFI_INIT_START); + + /* Complete quasi-dynamic register programming */ + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + /* Polling programming done */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_SWSTAT_OFFSET), + DDR4_SWSTAT_SW_DONE_ACK, true, + TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" programming done\n"); + return ret; + } + + debug("%s:DDR programming done\n", __func__); + + return ret; +} + +static int ddr_trigger_sdram_init(phys_addr_t umctl2_base, + enum ddr_type umctl2_type) +{ + int ret; + + /* Enable quasi-dynamic programing of controller registers */ + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type); + if (ret) + return ret; + + /* Unmasking dfi init complete */ + setbits_le32(umctl2_base + DDR4_DFIMISC_OFFSET, + DDR4_DFIMISC_DFI_INIT_COMPLETE_EN); + + /* Software exit from self-refresh */ + clrbits_le32(umctl2_base + DDR4_PWRCTL_OFFSET, DDR4_PWRCTL_SELFREF_SW); + + /* Complete quasi-dynamic register programming */ + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + /* Polling programming done */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_SWSTAT_OFFSET), + DDR4_SWSTAT_SW_DONE_ACK, true, + TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" programming done\n"); + return ret; + } + + debug("%s:DDR programming done\n", __func__); + return ret; +} + +static int ddr_post_handoff_config(phys_addr_t umctl2_base, + enum ddr_type umctl2_type) +{ + int ret = 0; + u32 value; + u32 start = get_timer(0); + + do { + if (get_timer(start) > TIMEOUT_200MS) { + debug("%s: Timeout while waiting for", + __func__); + debug(" DDR enters normal operating mode\n"); + return -ETIMEDOUT; + } + + udelay(1); + WATCHDOG_RESET(); + + /* Polling until SDRAM entered normal operating mode */ + value = readl(umctl2_base + DDR4_STAT_OFFSET) & + DDR4_STAT_OPERATING_MODE; + } while (value != OPM_NORMAL); + + printf("DDR entered normal operating mode\n"); + + /* Enabling auto refresh */ + clrbits_le32(umctl2_base + DDR4_RFSHCTL3_OFFSET, + DDR4_RFSHCTL3_DIS_AUTO_REFRESH); + + /* Checking ECC is enabled? */ + value = readl(umctl2_base + DDR4_ECCCFG0_OFFSET) & DDR4_ECC_MODE; + if (value) { + printf("ECC is enabled\n"); + ret = scrubber_ddr_config(umctl2_base, umctl2_type); + if (ret) + printf("Failed to enable ECC\n"); + } + + return ret; +} + +static int configure_training_firmware(struct ddr_handoff *ddr_handoff_info, + const void *train_imem, + const void *train_dmem) +{ + int ret = 0; + + printf("Configuring training firmware ...\n"); + + /* Reset SDRAM */ + writew(DDR_PHY_PROTECT_MEMRESET, + (uintptr_t)(ddr_handoff_info->phy_base + + DDR_PHY_MEMRESETL_OFFSET)); + + /* Enable access to the PHY configuration registers */ + clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_APBONLY0_OFFSET, + DDR_PHY_MICROCONTMUXSEL); + + /* Copy train IMEM bin */ + memcpy((void *)ddr_handoff_info->train_imem_base, train_imem, + ddr_handoff_info->train_imem_length); + + ret = memcmp((void *)ddr_handoff_info->train_imem_base, train_imem, + ddr_handoff_info->train_imem_length); + if (ret) { + debug("%s: Failed to copy train IMEM binary\n", __func__); + /* Isolate the APB access from internal CSRs */ + setbits_le16(ddr_handoff_info->phy_base + + DDR_PHY_APBONLY0_OFFSET, DDR_PHY_MICROCONTMUXSEL); + return ret; + } + + memcpy((void *)ddr_handoff_info->train_dmem_base, train_dmem, + ddr_handoff_info->train_dmem_length); + + ret = memcmp((void *)ddr_handoff_info->train_dmem_base, train_dmem, + ddr_handoff_info->train_dmem_length); + if (ret) + debug("%s: Failed to copy train DMEM binary\n", __func__); + + /* Isolate the APB access from internal CSRs */ + setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_APBONLY0_OFFSET, + DDR_PHY_MICROCONTMUXSEL); + + return ret; +} + +static void calibrating_sdram(struct ddr_handoff *ddr_handoff_info) +{ + /* Init mailbox protocol - set 1 to DCTWRITEPROT[0] */ + setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET, + DDR_PHY_DCTWRITEPROT); + + /* Init mailbox protocol - set 1 to UCTWRITEPROT[0] */ + setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_UCTWRITEPROT_OFFSET, + DDR_PHY_UCTWRITEPROT); + + /* Reset and stalling ARC processor */ + setbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET, + DDR_PHY_MICRORESET_RESET | DDR_PHY_MICRORESET_STALL); + + /* Release ARC processor */ + clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET, + DDR_PHY_MICRORESET_RESET); + + /* Starting PHY firmware execution */ + clrbits_le16(ddr_handoff_info->phy_base + DDR_PHY_MICRORESET_OFFSET, + DDR_PHY_MICRORESET_STALL); +} + +static int get_mail(struct ddr_handoff *handoff, enum message_mode mode, + u32 *message_id) +{ + int ret; + + /* Polling major messages from PMU */ + ret = wait_for_bit_le16((const void *)(handoff->phy_base + + DDR_PHY_UCTSHADOWREGS_OFFSET), + DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW, + false, TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", + __func__); + debug(" major messages from PMU\n"); + return ret; + } + + *message_id = readw((uintptr_t)(handoff->phy_base + + DDR_PHY_UCTWRITEONLYSHADOW_OFFSET)); + + if (mode == STREAMING_MESSAGE) + *message_id |= readw((uintptr_t)((handoff->phy_base + + DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET))) << + SZ_16; + + /* Ack the receipt of the major message */ + clrbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET, + DDR_PHY_DCTWRITEPROT); + + ret = wait_for_bit_le16((const void *)(handoff->phy_base + + DDR_PHY_UCTSHADOWREGS_OFFSET), + DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW, + true, TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", + __func__); + debug(" ack the receipt of the major message completed\n"); + return ret; + } + + /* Complete protocol */ + setbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET, + DDR_PHY_DCTWRITEPROT); + + return ret; +} + +static int get_mail_streaming(struct ddr_handoff *handoff, + enum message_mode mode, u32 *index) +{ + int ret; + + *index = readw((uintptr_t)(handoff->phy_base + + DDR_PHY_UCTWRITEONLYSHADOW_OFFSET)); + + if (mode == STREAMING_MESSAGE) + *index |= readw((uintptr_t)((handoff->phy_base + + DDR_PHY_UCTDATWRITEONLYSHADOW_OFFSET))) << + SZ_16; + + /* Ack the receipt of the major message */ + clrbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET, + DDR_PHY_DCTWRITEPROT); + + ret = wait_for_bit_le16((const void *)(handoff->phy_base + + DDR_PHY_UCTSHADOWREGS_OFFSET), + DDR_PHY_UCTSHADOWREGS_UCTWRITEPROTESHADOW, + true, TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", + __func__); + debug(" ack the receipt of the major message completed\n"); + return ret; + } + + /* Complete protocol */ + setbits_le16(handoff->phy_base + DDR_PHY_DCTWRITEPROT_OFFSET, + DDR_PHY_DCTWRITEPROT); + + return 0; +} + +static int decode_streaming_message(struct ddr_handoff *ddr_handoff_info, + u32 *streaming_index) +{ + int i = 0, ret; + u32 temp; + + temp = *streaming_index; + + while (i < GET_LOWHW_DATA(temp)) { + ret = get_mail(ddr_handoff_info, STREAMING_MESSAGE, + streaming_index); + if (ret) + return ret; + + printf("args[%d]: 0x%x ", i, *streaming_index); + i++; + } + + return 0; +} + +static int poll_for_training_complete(struct ddr_handoff *ddr_handoff_info) +{ + int ret; + u32 message_id = 0; + u32 streaming_index = 0; + + do { + ret = get_mail(ddr_handoff_info, MAJOR_MESSAGE, &message_id); + if (ret) + return ret; + + printf("Major message id = 0%x\n", message_id); + + if (message_id == FW_STREAMING_MSG_ID) { + ret = get_mail_streaming(ddr_handoff_info, + STREAMING_MESSAGE, + &streaming_index); + if (ret) + return ret; + + printf("streaming index 0%x : ", streaming_index); + + decode_streaming_message(ddr_handoff_info, + &streaming_index); + + printf("\n"); + } + } while ((message_id != FW_TRAINING_COMPLETED_STAT) && + (message_id != FW_TRAINING_FAILED_STAT)); + + if (message_id == FW_TRAINING_COMPLETED_STAT) { + printf("DDR firmware training completed\n"); + } else if (message_id == FW_TRAINING_FAILED_STAT) { + printf("DDR firmware training failed\n"); + hang(); + } + + return 0; +} + +static void enable_phy_clk_for_csr_access(struct ddr_handoff *handoff, + bool enable) +{ + if (enable) { + /* Enable PHY clk */ + setbits_le16((uintptr_t)(handoff->phy_base + + DDR_PHY_UCCLKHCLKENABLES_OFFSET), + DDR_PHY_UCCLKHCLKENABLES_UCCLKEN | + DDR_PHY_UCCLKHCLKENABLES_HCLKEN); + } else { + /* Disable PHY clk */ + clrbits_le16((uintptr_t)(handoff->phy_base + + DDR_PHY_UCCLKHCLKENABLES_OFFSET), + DDR_PHY_UCCLKHCLKENABLES_UCCLKEN | + DDR_PHY_UCCLKHCLKENABLES_HCLKEN); + } +} + +/* helper function for updating train result to umctl2 RANKCTL register */ +static void set_cal_res_to_rankctrl(u32 reg_addr, u16 update_value, + u32 mask, u32 msb_mask, u32 shift) +{ + u32 reg, value; + + reg = readl((uintptr_t)reg_addr); + + debug("max value divided by 2 is 0x%x\n", update_value); + debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg); + debug("update with train result\n"); + + value = (reg & mask) >> shift; + + value += update_value + 3; + + /* reg value greater than 0xF, set one to diff_rank_wr_gap_msb */ + if (value > 0xF) + setbits_le32((u32 *)(uintptr_t)reg_addr, msb_mask); + else + clrbits_le32((u32 *)(uintptr_t)reg_addr, msb_mask); + + reg = readl((uintptr_t)reg_addr); + + value = (value << shift) & mask; + + /* update register */ + writel((reg & (~mask)) | value, (uintptr_t)reg_addr); + + reg = readl((uintptr_t)reg_addr); + debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg); + debug("update with train result\n"); +} + +/* helper function for updating train result to register */ +static void set_cal_res_to_reg(u32 reg_addr, u16 update_value, u32 mask, + u32 shift) +{ + u32 reg, value; + + reg = readl((uintptr_t)reg_addr); + + debug("max value divided by 2 is 0x%x\n", update_value); + debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg); + debug("update with train result\n"); + + value = (reg & mask) >> shift; + + value = ((value + update_value + 3) << shift) & mask; + + /* update register */ + writel((reg & (~mask)) | value, (uintptr_t)reg_addr); + + reg = readl((uintptr_t)reg_addr); + debug("umclt2 register 0x%x value is 0%x before ", reg_addr, reg); + debug("update with train result\n"); +} + +static u16 get_max_txdqsdlytg0_ux_p0(struct ddr_handoff *handoff, u32 reg, + u8 numdbyte, u16 upd_val) +{ + u32 b_addr; + u16 val; + u8 byte; + + /* Getting max value from DBYTEx TxDqsDlyTg0_ux_p0 */ + for (byte = 0; byte < numdbyte; byte++) { + b_addr = byte << 13; + + /* TxDqsDlyTg0[9:6] is the coarse delay */ + val = (readw((uintptr_t)(handoff->phy_base + + reg + b_addr)) & + DDR_PHY_TXDQDLYTG0_COARSE_DELAY) >> + DDR_PHY_TXDQDLYTG0_COARSE_DELAY_SHIFT; + + upd_val = max(val, upd_val); + } + + return upd_val; +} + +static int set_cal_res_to_umctl2(struct ddr_handoff *handoff, + phys_addr_t umctl2_base, + enum ddr_type umctl2_type) +{ + int ret; + u8 numdbyte = 0x8; + u16 upd_val, val; + u32 dramtmg2_reg_addr, rankctl_reg_addr, reg_addr; + + /* Enable quasi-dynamic programing of the controller registers */ + clrbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + ret = enable_quasi_dynamic_reg_grp3(umctl2_base, umctl2_type); + if (ret) + return ret; + + /* Enable access to the PHY configuration registers */ + clrbits_le16(handoff->phy_base + DDR_PHY_APBONLY0_OFFSET, + DDR_PHY_MICROCONTMUXSEL); + + if (umctl2_type == DDRTYPE_DDR4) { + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_WW_1_0_OFFSET))); + + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_WW_0_1_OFFSET))); + } else if (umctl2_type == DDRTYPE_LPDDR4_0) { + val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHA_WW_1_0_OFFSET))); + + upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHA_WW_0_1_OFFSET))); + } else if (umctl2_type == DDRTYPE_LPDDR4_1) { + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHB_WW_1_0_OFFSET))); + + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHB_WW_0_1_OFFSET))); + } + + upd_val = max(val, upd_val); + debug("max value is 0x%x\n", upd_val); + + /* Divided by two is required when running in freq ratio 1:2 */ + if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO)) + upd_val = DIV_ROUND_CLOSEST(upd_val, 2); + + debug("Update train value to umctl2 RANKCTL.diff_rank_wr_gap\n"); + rankctl_reg_addr = umctl2_base + DDR4_RANKCTL_OFFSET; + /* Update train value to umctl2 RANKCTL.diff_rank_wr_gap */ + set_cal_res_to_rankctrl(rankctl_reg_addr, upd_val, + DDR4_RANKCTL_DIFF_RANK_WR_GAP, + DDR4_RANKCTL_DIFF_RANK_WR_GAP_MSB, + DDR4_RANKCTL_DIFF_RANK_WR_GAP_SHIFT); + + debug("Update train value to umctl2 DRAMTMG2.W2RD\n"); + dramtmg2_reg_addr = umctl2_base + DDR4_DRAMTMG2_OFFSET; + /* Update train value to umctl2 dramtmg2.wr2rd */ + set_cal_res_to_reg(dramtmg2_reg_addr, upd_val, DDR4_DRAMTMG2_WR2RD, 0); + + if (umctl2_type == DDRTYPE_DDR4) { + debug("Update train value to umctl2 DRAMTMG9.W2RD_S\n"); + reg_addr = umctl2_base + DDR4_DRAMTMG9_OFFSET; + /* Update train value to umctl2 dramtmg9.wr2rd_s */ + set_cal_res_to_reg(reg_addr, upd_val, DDR4_DRAMTMG9_W2RD_S, 0); + } + + if (umctl2_type == DDRTYPE_DDR4) { + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_RR_1_0_OFFSET))); + + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_RR_0_1_OFFSET))); + } else if (umctl2_type == DDRTYPE_LPDDR4_0) { + val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHA_RR_1_0_OFFSET))); + + upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHA_RR_0_1_OFFSET))); + } else if (umctl2_type == DDRTYPE_LPDDR4_1) { + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHB_RR_1_0_OFFSET))); + + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHB_RR_0_1_OFFSET))); + } + + upd_val = max(val, upd_val); + debug("max value is 0x%x\n", upd_val); + + /* Divided by two is required when running in freq ratio 1:2 */ + if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO)) + upd_val = DIV_ROUND_CLOSEST(upd_val, 2); + + debug("Update train value to umctl2 RANKCTL.diff_rank_rd_gap\n"); + /* Update train value to umctl2 RANKCTL.diff_rank_rd_gap */ + set_cal_res_to_rankctrl(rankctl_reg_addr, upd_val, + DDR4_RANKCTL_DIFF_RANK_RD_GAP, + DDR4_RANKCTL_DIFF_RANK_RD_GAP_MSB, + DDR4_RANKCTL_DIFF_RANK_RD_GAP_SHIFT); + + if (umctl2_type == DDRTYPE_DDR4) { + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_RW_1_1_OFFSET))); + + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_RW_1_0_OFFSET))); + + upd_val = max(val, upd_val); + + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_RW_0_1_OFFSET))); + + upd_val = max(val, upd_val); + + val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_RW_0_0_OFFSET))); + + upd_val = max(val, upd_val); + } else if (umctl2_type == DDRTYPE_LPDDR4_0) { + val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHA_RW_1_1_OFFSET))); + + upd_val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHA_RW_1_0_OFFSET))); + + upd_val = max(val, upd_val); + + val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHA_RW_0_1_OFFSET))); + + upd_val = max(val, upd_val); + + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHA_RW_0_0_OFFSET))); + + upd_val = max(val, upd_val); + } else if (umctl2_type == DDRTYPE_LPDDR4_1) { + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHB_RW_1_1_OFFSET))); + + upd_val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHB_RW_1_0_OFFSET))); + + upd_val = max(val, upd_val); + + val = GET_HIGHB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHB_RW_0_1_OFFSET))); + + upd_val = max(val, upd_val); + + val = GET_LOWB_DATA(readw((uintptr_t)(handoff->phy_base + + DMEM_MB_CDD_CHB_RW_0_0_OFFSET))); + + upd_val = max(val, upd_val); + } + + debug("max value is 0x%x\n", upd_val); + + /* Divided by two is required when running in freq ratio 1:2 */ + if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO)) + upd_val = DIV_ROUND_CLOSEST(upd_val, 2); + + debug("Update train value to umctl2 dramtmg2.rd2wr\n"); + /* Update train value to umctl2 dramtmg2.rd2wr */ + set_cal_res_to_reg(dramtmg2_reg_addr, upd_val, DDR4_DRAMTMG2_RD2WR, + DDR4_DRAMTMG2_RD2WR_SHIFT); + + /* Checking ECC is enabled?, lpddr4 using inline ECC */ + val = readl(umctl2_base + DDR4_ECCCFG0_OFFSET) & DDR4_ECC_MODE; + if (val && umctl2_type == DDRTYPE_DDR4) + numdbyte = 0x9; + + upd_val = 0; + + /* Getting max value from DBYTEx TxDqsDlyTg0_u0_p0 */ + upd_val = get_max_txdqsdlytg0_ux_p0(handoff, + DDR_PHY_DBYTE0_TXDQDLYTG0_U0_P0, + numdbyte, upd_val); + + /* Getting max value from DBYTEx TxDqsDlyTg0_u1_p0 */ + upd_val = get_max_txdqsdlytg0_ux_p0(handoff, + DDR_PHY_DBYTE0_TXDQDLYTG0_U1_P0, + numdbyte, upd_val); + + debug("TxDqsDlyTg0 max value is 0x%x\n", upd_val); + + /* Divided by two is required when running in freq ratio 1:2 */ + if (!(readl(umctl2_base + DDR4_MSTR_OFFSET) & DDR4_FREQ_RATIO)) + upd_val = DIV_ROUND_CLOSEST(upd_val, 2); + + reg_addr = umctl2_base + DDR4_DFITMG1_OFFSET; + /* Update train value to umctl2 dfitmg1.dfi_wrdata_delay */ + set_cal_res_to_reg(reg_addr, upd_val, DDR4_DFITMG1_DFI_T_WRDATA_DELAY, + DDR4_DFITMG1_DFI_T_WRDATA_SHIFT); + + /* Complete quasi-dynamic register programming */ + setbits_le32(umctl2_base + DDR4_SWCTL_OFFSET, DDR4_SWCTL_SW_DONE); + + /* Polling programming done */ + ret = wait_for_bit_le32((const void *)(umctl2_base + + DDR4_SWSTAT_OFFSET), DDR4_SWSTAT_SW_DONE_ACK, + true, TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" programming done\n"); + } + + /* Isolate the APB access from internal CSRs */ + setbits_le16(handoff->phy_base + DDR_PHY_APBONLY0_OFFSET, + DDR_PHY_MICROCONTMUXSEL); + + return ret; +} + +static int update_training_result(struct ddr_handoff *ddr_handoff_info) +{ + int ret = 0; + + /* Updating training result to first DDR controller */ + if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 || + ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) { + ret = set_cal_res_to_umctl2(ddr_handoff_info, + ddr_handoff_info->cntlr_base, + ddr_handoff_info->cntlr_t); + if (ret) { + debug("%s: Failed to update train result to ", + __func__); + debug("first DDR controller\n"); + return ret; + } + } + + /* Updating training result to 2nd DDR controller */ + if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) { + ret = set_cal_res_to_umctl2(ddr_handoff_info, + ddr_handoff_info->cntlr2_base, + ddr_handoff_info->cntlr2_t); + if (ret) { + debug("%s: Failed to update train result to ", + __func__); + debug("2nd DDR controller\n"); + } + } + + return ret; +} + +static int start_ddr_calibration(struct ddr_handoff *ddr_handoff_info) +{ + int ret; + + /* Implement 1D training firmware */ + ret = configure_training_firmware(ddr_handoff_info, + (const void *)SOC64_HANDOFF_DDR_TRAIN_IMEM_1D_SECTION, + (const void *)SOC64_HANDOFF_DDR_TRAIN_DMEM_1D_SECTION); + if (ret) { + debug("%s: Failed to configure 1D training firmware\n", + __func__); + return ret; + } + + calibrating_sdram(ddr_handoff_info); + + ret = poll_for_training_complete(ddr_handoff_info); + if (ret) { + debug("%s: Failed to get FW training completed\n", + __func__); + return ret; + } + + /* Updating training result to DDR controller */ + ret = update_training_result(ddr_handoff_info); + if (ret) + return ret; + + /* Implement 2D training firmware */ + ret = configure_training_firmware(ddr_handoff_info, + (const void *)SOC64_HANDOFF_DDR_TRAIN_IMEM_2D_SECTION, + (const void *)SOC64_HANDOFF_DDR_TRAIN_DMEM_2D_SECTION); + if (ret) { + debug("%s: Failed to update train result to ", __func__); + debug("DDR controller\n"); + return ret; + } + + calibrating_sdram(ddr_handoff_info); + + ret = poll_for_training_complete(ddr_handoff_info); + if (ret) + debug("%s: Failed to get FW training completed\n", + __func__); + + return ret; +} + +static int init_controller(struct ddr_handoff *ddr_handoff_info, + u32 *user_backup, u32 *user_backup_2nd) +{ + int ret = 0; + + if (ddr_handoff_info->cntlr_t == DDRTYPE_DDR4 || + ddr_handoff_info->cntlr_t == DDRTYPE_LPDDR4_0) { + /* Initialize 1st DDR controller */ + ret = init_umctl2(ddr_handoff_info->cntlr_handoff_base, + ddr_handoff_info->cntlr_base, + ddr_handoff_info->cntlr_t, + ddr_handoff_info->cntlr_handoff_length, + user_backup); + if (ret) { + debug("%s: Failed to inilialize first controller\n", + __func__); + return ret; + } + } + + if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) { + /* Initialize 2nd DDR controller */ + ret = init_umctl2(ddr_handoff_info->cntlr2_handoff_base, + ddr_handoff_info->cntlr2_base, + ddr_handoff_info->cntlr2_t, + ddr_handoff_info->cntlr2_handoff_length, + user_backup_2nd); + if (ret) + debug("%s: Failed to inilialize 2nd controller\n", + __func__); + } + + return ret; +} + +static int dfi_init(struct ddr_handoff *ddr_handoff_info) +{ + int ret; + + ret = ddr_start_dfi_init(ddr_handoff_info->cntlr_base, + ddr_handoff_info->cntlr_t); + if (ret) + return ret; + + if (ddr_handoff_info->cntlr2_t == DDRTYPE_LPDDR4_1) + ret = ddr_start_dfi_init(ddr_handoff_info->cntlr2_base, + ddr_handoff_info->cntlr2_t); + + return ret; +} + +static int check_dfi_init(struct ddr_handoff *handoff) +{ + int ret; + + ret = ddr_check_dfi_init_complete(handoff->cntlr_base, + handoff->cntlr_t); + if (ret) + return ret; + + if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1) + ret = ddr_check_dfi_init_complete(handoff->cntlr2_base, + handoff->cntlr2_t); + + return ret; +} + +static int trigger_sdram_init(struct ddr_handoff *handoff) +{ + int ret; + + ret = ddr_trigger_sdram_init(handoff->cntlr_base, + handoff->cntlr_t); + if (ret) + return ret; + + if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1) + ret = ddr_trigger_sdram_init(handoff->cntlr2_base, + handoff->cntlr2_t); + + return ret; +} + +static int ddr_post_config(struct ddr_handoff *handoff) +{ + int ret; + + ret = ddr_post_handoff_config(handoff->cntlr_base, + handoff->cntlr_t); + if (ret) + return ret; + + if (handoff->cntlr2_t == DDRTYPE_LPDDR4_1) + ret = ddr_post_handoff_config(handoff->cntlr2_base, + handoff->cntlr2_t); + + return ret; +} + +static bool is_ddr_retention_enabled(u32 boot_scratch_cold0_reg) +{ + return boot_scratch_cold0_reg & + ALT_SYSMGR_SCRATCH_REG_0_DDR_RETENTION_MASK; +} + +static bool is_ddr_bitstream_sha_matching(u32 boot_scratch_cold0_reg) +{ + return boot_scratch_cold0_reg & ALT_SYSMGR_SCRATCH_REG_0_DDR_SHA_MASK; +} + +static enum reset_type get_reset_type(u32 boot_scratch_cold0_reg) +{ + return (boot_scratch_cold0_reg & + ALT_SYSMGR_SCRATCH_REG_0_DDR_RESET_TYPE_MASK) >> + ALT_SYSMGR_SCRATCH_REG_0_DDR_RESET_TYPE_SHIFT; +} + +void reset_type_debug_print(u32 boot_scratch_cold0_reg) +{ + switch (get_reset_type(boot_scratch_cold0_reg)) { + case POR_RESET: + debug("%s: POR is triggered\n", __func__); + break; + case WARM_RESET: + debug("%s: Warm reset is triggered\n", __func__); + break; + case COLD_RESET: + debug("%s: Cold reset is triggered\n", __func__); + break; + default: + debug("%s: Invalid reset type\n", __func__); + } +} + +bool is_ddr_init(void) +{ + u32 reg = readl(socfpga_get_sysmgr_addr() + + SYSMGR_SOC64_BOOT_SCRATCH_COLD0); + + reset_type_debug_print(reg); + + if (get_reset_type(reg) == POR_RESET) { + debug("%s: DDR init is required\n", __func__); + return true; + } + + if (get_reset_type(reg) == WARM_RESET) { + debug("%s: DDR init is skipped\n", __func__); + return false; + } + + if (get_reset_type(reg) == COLD_RESET) { + if (is_ddr_retention_enabled(reg) && + is_ddr_bitstream_sha_matching(reg)) { + debug("%s: DDR retention bit is set\n", __func__); + debug("%s: Matching in DDR bistream\n", __func__); + debug("%s: DDR init is skipped\n", __func__); + return false; + } + } + + debug("%s: DDR init is required\n", __func__); + return true; +} + +int sdram_mmr_init_full(struct udevice *dev) +{ + u32 user_backup[2], user_backup_2nd[2]; + int ret; + struct bd_info bd; + struct ddr_handoff ddr_handoff_info; + struct altera_sdram_priv *priv = dev_get_priv(dev); + + printf("Checking SDRAM configuration in progress ...\n"); + ret = populate_ddr_handoff(&ddr_handoff_info); + if (ret) { + debug("%s: Failed to populate DDR handoff\n", + __func__); + return ret; + } + + /* Set the MPFE NoC mux to correct DDR controller type */ + use_ddr4(ddr_handoff_info.cntlr_t); + + if (is_ddr_init()) { + printf("SDRAM init in progress ...\n"); + + /* + * Polling reset complete, must be high to ensure DDR subsystem + * in complete reset state before init DDR clock and DDR + * controller + */ + ret = wait_for_bit_le32((const void *)((uintptr_t)(readl + (ddr_handoff_info.mem_reset_base) + + MEM_RST_MGR_STATUS)), + MEM_RST_MGR_STATUS_RESET_COMPLETE, + true, TIMEOUT_200MS, false); + if (ret) { + debug("%s: Timeout while waiting for", __func__); + debug(" reset complete done\n"); + return ret; + } + + ret = enable_ddr_clock(dev); + if (ret) + return ret; + + ret = init_controller(&ddr_handoff_info, user_backup, + user_backup_2nd); + if (ret) { + debug("%s: Failed to inilialize DDR controller\n", + __func__); + return ret; + } + + /* Release the controller from reset */ + setbits_le32((uintptr_t) + (readl(ddr_handoff_info.mem_reset_base) + + MEM_RST_MGR_STATUS), MEM_RST_MGR_STATUS_AXI_RST | + MEM_RST_MGR_STATUS_CONTROLLER_RST | + MEM_RST_MGR_STATUS_RESET_COMPLETE); + + printf("DDR controller configuration is completed\n"); + + /* Initialize DDR PHY */ + ret = init_phy(&ddr_handoff_info); + if (ret) { + debug("%s: Failed to inilialize DDR PHY\n", __func__); + return ret; + } + + enable_phy_clk_for_csr_access(&ddr_handoff_info, true); + + ret = start_ddr_calibration(&ddr_handoff_info); + if (ret) { + debug("%s: Failed to calibrate DDR\n", __func__); + return ret; + } + + enable_phy_clk_for_csr_access(&ddr_handoff_info, false); + + /* Reset ARC processor when no using for security purpose */ + setbits_le16(ddr_handoff_info.phy_base + + DDR_PHY_MICRORESET_OFFSET, + DDR_PHY_MICRORESET_RESET); + + /* DDR freq set to support DDR4-3200 */ + phy_init_engine(&ddr_handoff_info); + + ret = dfi_init(&ddr_handoff_info); + if (ret) + return ret; + + ret = check_dfi_init(&ddr_handoff_info); + if (ret) + return ret; + + ret = trigger_sdram_init(&ddr_handoff_info); + if (ret) + return ret; + + ret = ddr_post_config(&ddr_handoff_info); + if (ret) + return ret; + + /* Restore user settings */ + writel(user_backup[0], ddr_handoff_info.cntlr_base + + DDR4_PWRCTL_OFFSET); + + if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_0) + setbits_le32(ddr_handoff_info.cntlr_base + + DDR4_INIT0_OFFSET, user_backup[1]); + + if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_1) { + /* Restore user settings */ + writel(user_backup_2nd[0], + ddr_handoff_info.cntlr2_base + + DDR4_PWRCTL_OFFSET); + + setbits_le32(ddr_handoff_info.cntlr2_base + + DDR4_INIT0_OFFSET, user_backup_2nd[1]); + } + + /* Enable input traffic per port */ + setbits_le32(ddr_handoff_info.cntlr_base + DDR4_PCTRL0_OFFSET, + DDR4_PCTRL0_PORT_EN); + + if (ddr_handoff_info.cntlr2_t == DDRTYPE_LPDDR4_1) { + /* Enable input traffic per port */ + setbits_le32(ddr_handoff_info.cntlr2_base + + DDR4_PCTRL0_OFFSET, DDR4_PCTRL0_PORT_EN); + } + + printf("DDR init success\n"); + } + + /* Get bank configuration from devicetree */ + ret = fdtdec_decode_ram_size(gd->fdt_blob, NULL, 0, NULL, + (phys_size_t *)&gd->ram_size, &bd); + if (ret) { + debug("%s: Failed to decode memory node\n", __func__); + return -1; + } + + printf("DDR: %lld MiB\n", gd->ram_size >> 20); + + priv->info.base = bd.bi_dram[0].start; + priv->info.size = gd->ram_size; + + sdram_size_check(&bd); + + sdram_set_firewall(&bd); + + return 0; +} diff --git a/drivers/ddr/altera/sdram_soc64.c b/drivers/ddr/altera/sdram_soc64.c index cc656db97c..d6baac2410 100644 --- a/drivers/ddr/altera/sdram_soc64.c +++ b/drivers/ddr/altera/sdram_soc64.c @@ -100,12 +100,14 @@ int emif_reset(struct altera_sdram_plat *plat) return 0; } +#if !IS_ENABLED(CONFIG_TARGET_SOCFPGA_N5X) int poll_hmc_clock_status(void) { return wait_for_bit_le32((const void *)(socfpga_get_sysmgr_addr() + SYSMGR_SOC64_HMC_CLK), SYSMGR_HMC_CLK_STATUS_MSK, true, 1000, false); } +#endif void sdram_clear_mem(phys_addr_t addr, phys_size_t size) { @@ -249,11 +251,78 @@ phys_size_t sdram_calculate_size(struct altera_sdram_plat *plat) return size; } +void sdram_set_firewall(struct bd_info *bd) +{ + u32 i; + phys_size_t value; + u32 lower, upper; + + for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { + if (!bd->bi_dram[i].size) + continue; + + value = bd->bi_dram[i].start; + + /* Keep first 1MB of SDRAM memory region as secure region when + * using ATF flow, where the ATF code is located. + */ + if (IS_ENABLED(CONFIG_SPL_ATF) && i == 0) + value += SZ_1M; + + /* Setting non-secure MPU region base and base extended */ + lower = lower_32_bits(value); + upper = upper_32_bits(value); + FW_MPU_DDR_SCR_WRITEL(lower, + FW_MPU_DDR_SCR_MPUREGION0ADDR_BASE + + (i * 4 * sizeof(u32))); + FW_MPU_DDR_SCR_WRITEL(upper & 0xff, + FW_MPU_DDR_SCR_MPUREGION0ADDR_BASEEXT + + (i * 4 * sizeof(u32))); + + /* Setting non-secure Non-MPU region base and base extended */ + FW_MPU_DDR_SCR_WRITEL(lower, + FW_MPU_DDR_SCR_NONMPUREGION0ADDR_BASE + + (i * 4 * sizeof(u32))); + FW_MPU_DDR_SCR_WRITEL(upper & 0xff, + FW_MPU_DDR_SCR_NONMPUREGION0ADDR_BASEEXT + + (i * 4 * sizeof(u32))); + + /* Setting non-secure MPU limit and limit extexded */ + value = bd->bi_dram[i].start + bd->bi_dram[i].size - 1; + + lower = lower_32_bits(value); + upper = upper_32_bits(value); + + FW_MPU_DDR_SCR_WRITEL(lower, + FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMIT + + (i * 4 * sizeof(u32))); + FW_MPU_DDR_SCR_WRITEL(upper & 0xff, + FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMITEXT + + (i * 4 * sizeof(u32))); + + /* Setting non-secure Non-MPU limit and limit extexded */ + FW_MPU_DDR_SCR_WRITEL(lower, + FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMIT + + (i * 4 * sizeof(u32))); + FW_MPU_DDR_SCR_WRITEL(upper & 0xff, + FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMITEXT + + (i * 4 * sizeof(u32))); + + FW_MPU_DDR_SCR_WRITEL(BIT(i) | BIT(i + 8), + FW_MPU_DDR_SCR_EN_SET); + } +} + static int altera_sdram_of_to_plat(struct udevice *dev) { struct altera_sdram_plat *plat = dev_get_plat(dev); fdt_addr_t addr; + /* These regs info are part of DDR handoff in bitstream */ +#if IS_ENABLED(CONFIG_TARGET_SOCFPGA_N5X) + return 0; +#endif + addr = dev_read_addr_index(dev, 0); if (addr == FDT_ADDR_T_NONE) return -EINVAL; @@ -314,6 +383,7 @@ static struct ram_ops altera_sdram_ops = { static const struct udevice_id altera_sdram_ids[] = { { .compatible = "altr,sdr-ctl-s10" }, { .compatible = "intel,sdr-ctl-agilex" }, + { .compatible = "intel,sdr-ctl-n5x" }, { /* sentinel */ } }; diff --git a/drivers/ddr/altera/sdram_soc64.h b/drivers/ddr/altera/sdram_soc64.h index 8af0afc410..7460f8c220 100644 --- a/drivers/ddr/altera/sdram_soc64.h +++ b/drivers/ddr/altera/sdram_soc64.h @@ -180,6 +180,7 @@ int emif_reset(struct altera_sdram_plat *plat); int poll_hmc_clock_status(void); void sdram_clear_mem(phys_addr_t addr, phys_size_t size); void sdram_init_ecc_bits(struct bd_info *bd); +void sdram_set_firewall(struct bd_info *bd); void sdram_size_check(struct bd_info *bd); phys_size_t sdram_calculate_size(struct altera_sdram_plat *plat); int sdram_mmr_init_full(struct udevice *dev); |